Do you want to publish a course? Click here

One-nucleon transfer reactions and the optical potential

73   0   0.0 ( 0 )
 Added by Filomena Nunes
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocality in the optical potential in transfer reactions. The results of a purely phenomenological potential and the optical potential obtained from the dispersive optical model are compared; both point toward the importance of including nonlocality in transfer reactions explicitly. Given the large ambiguities associated with optical potentials, we discuss some new developments toward the quantification of this uncertainty. We conclude with some general comments and a brief account of new advances that are in the pipeline.



rate research

Read More

The dispersive optical-model is applied to transfer reactions. A systematic study of $(d,p)$ reactions on closed-shell nuclei using the finite-range adiabatic reaction model is performed at several beam energies and results are compared to data as well as to predictions using a standard global optical-potential. Overall, we find that the dispersive optical-model is able to describe the angular distributions as well as or better than the global parameterization. In addition, it also constrains the overlap function. Spectroscopic factors extracted using the dispersive optical-model are generally lower than those using standard parameters, exhibit a reduced dependence on beam energy, and are more in line with results obtained from $(e,ep)$ measurements.
Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description, i.e. starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. Methods: We basically follow the KMT approach to build a microscopic complex optical potential and then we perform some test calculations on 16O at different energies. Results: Our conclusion is that a particular set of potentials with a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) has the best performances reproducing the scattering observables. Conclusions: Our work shows that building an optical potential within Chiral Perturbation Theory is a promising approach to the description of elastic proton scattering, in particular, in view of the future inclusion of many-body forces that naturally arise in such framework.
203 - M.V. Ivanov 2000
An approach to the Generator Coordinate Method (GCM) using Skyrme-type effective forces and Woods-Saxon construction potential is applied to calculate the single-particle proton and neutron overlap functions in $^{40}$Ca. The relationship between the bound-state overlap functions and the one-body density matrix has been used. These overlap functions are applied to calculate the cross sections of one-nucleon removal reactions such as ($e,ep$), ($gamma,p$) and ($p,d$) on $^{40}$Ca on the same theoretical footing. A consistent description of data for the different reactions is achieved. The shapes of the experimental cross sections for transitions to the $3/2^{+}$ ground state and the first $1/2^{+}$ excited state of the residual nuclei are well reproduced by the overlap functions obtained within the GCM. An additional spectroscopic factor accounting for correlations not included in the overlap function must be applied to the calculated results to reproduce the size of the experimental cross sections.
91 - M. R. Robilotta 2006
In the rest frame of a many-body system, used in the calculation of its static and scattering properties, the center of mass of a two-body subsystem is allowed to drift. We show, in a model independent way, that drift corrections to the nucleon-nucleon potential are relatively large and arise from both one- and two-pion exchange processes. As far as chiral symmetry is concerned, corrections to these processes begin respectively at $cO(q^2)$ and $cO(q^4)$. The two-pion exchange interaction also yields a new spin structure, that promotes the presence of $P$ waves in trinuclei and is associated with profile functions which do not coincide with neither central nor spin-orbit ones. In principle, the new spin terms should be smaller than the $cO(q^3)$ spin-orbit components. However, in the isospin even channel, a large contribution reverts this expectation and gives rise to the prediction of important drift effects.
The properties of the two-quasiparticle-like soft E1-modes and PDR have been and are systematically studied with the help of inelastic and electromagnetic experiments which essentially probe the particle-hole components of these vibrations. It is shown that further insight in their characterisation can be achieved with the help of two-nucleon transferreactions, in particular concerning the particle-particle components of the modes, in terms of absolute differential cross sections which take properly into account successive and simultaneous transfer mechanisms corrected for non-orthogonality, able to reproduce the experimental findings at the 10% level. The process $^9$Li$(t,p)^{11}$Li(1$^-$) is discussed, and absolute cross sections predicted.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا