One long-standing difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derivie a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrodinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.
We develop a systematic and efficient approach for numerically solving the non-Markovian quantum state diffusion equations for open quantum systems coupled to an environment up to arbitrary orders of noises or coupling strengths. As an important application, we consider a real-time simulation of a spin-boson model in a strong coupling regime that is difficult to deal with using conventional methods. We show that the non-Markovian stochastic Schr{o}dinger equation can be efficiently implemented as a real--time simulation for this model, so as to give an accurate description of spin-boson dynamics beyond the rotating-wave approximation.
We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the dynamics is studied using the non-Markovian jump description. The approach gives new insight into the memory effects influencing the spin dynamics and demonstrates, how for the spin-boson model the the co-operative action of different channels complicates the detection of memory effects in the dynamics.
We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and trace-preserving dynamics. We apply our theory to an atom in a dissipative cavity for a Lorentzian spectral density of bath modes, a dynamics which can be exactly solved. The predicted evolution shows a significant improvement in approaching the exact solution with respect to two well-known memory-kernel master equations.
The non-Markovian dynamics of a charged particle linearly coupled to a neutral bosonic heat bath is investigated in an external uniform magnetic field. The analytical expressions for the time-dependent and asymptotic friction and diffusion coefficients, cyclotron frequencies, variances of the coordinate and momentum, and orbital magnetic moments are derived. The role of magnetic field in the dissipation and diffusion processes is illustrated by several examples in the low- and high-temperature regimes. The localization phenomenon for a charged particle is observed. The orbital diamagnetism of quantum system in a dissipative environment is studied. The quantization conditions are found for the angular momentum.
Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum world. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the, so-called, Spectrum Broadcast Structures. These are multipartite quantum states of the system of interest and a part of its environment, assumed to be under an observation. This approach requires a departure from the standard open quantum systems methods, as the environment cannot be completely neglected. In the present work we study the emergence of such a state-structures in one of the canonical models of the condensed matter theory: Spin-boson model, describing the dynamics of a two-level system coupled to an environment made up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution affects the surfacing of a spectrum broadcast structure.