Do you want to publish a course? Click here

The ASKAP/EMU Source Finding Data Challenge

73   0   0.0 ( 0 )
 Added by Andrew Hopkins
 Publication date 2015
  fields Physics
and research's language is English
 Authors A. M. Hopkins




Ask ChatGPT about the research

The Evolutionary Map of the Universe (EMU) is a proposed radio continuum survey of the Southern Hemisphere up to declination +30 deg., with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU will use an automated source identification and measurement approach that is demonstrably optimal, to maximise the reliability, utility and robustness of the resulting radio source catalogues. As part of the process of achieving this aim, a Data Challenge has been conducted, providing international teams the opportunity to test a variety of source finders on a set of simulated images. The aim is to quantify the accuracy of existing automated source finding and measurement approaches, and to identify potential limitations. The Challenge attracted nine independent teams, who tested eleven different source finding tools. In addition, the Challenge initiators also tested the current ASKAPsoft source-finding tool to establish how it could benefit from incorporating successful features of the other tools. Here we present the results of the Data Challenge, identifying the successes and limitations for this broad variety of the current generation of radio source finding tools. As expected, most finders demonstrate completeness levels close to 100% at 10sigma dropping to levels around 10% by 5sigma. The reliability is typically close to 100% at 10sigma, with performance to lower sensitivities varying greatly between finders. All finders demonstrate the usual trade-off between completeness and reliability, whereby maintaining a high completeness at low signal-to-noise comes at the expense of reduced reliability, and vice-versa. We conclude with a series of recommendations for improving the performance of the ASKAPsoft source-finding tool.



rate research

Read More

Large scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of images and deriving scientific results from them will require quantifying the efficiency and bias of any search method. To achieve these objectives automated methods must be developed. Because gravitational lenses are rare objects reducing false positives will be particularly important. We present a description and results of an open gravitational lens finding challenge. Participants were asked to classify 100,000 candidate objects as to whether they were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a single false-positive identification. This is significantly better than direct inspection by humans was able to do. (abridged)
We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0x30.0 and 16.3x15.1, respectively. The median Root Mean Squared (RMS) noise values are 186$mu$Jy beam$^{-1}$ (960 MHz) and 165$mu$Jy beam$^{-1}$ (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg$^2$. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.
The Australian Square Kilometre Array Pathfinder (ASKAP) presents a number of challenges in the area of source finding and cataloguing. The data rates and image sizes are very large, and require automated processing in a high-performance computing environment. This requires development of new tools, that are able to operate in such an environment and can reliably handle large datasets. These tools must also be able to accommodate the different types of observations ASKAP will make: continuum imaging, spectral-line imaging, transient imaging. The ASKAP project has developed a source-finder known as Selavy, built upon the Duchamp source-finder (Whiting 2012). Selavy incorporates a number of new features, which we describe here. Since distributed processing of large images and cubes will be essential, we describe the algorithms used to distribute the data, find an appropriate threshold and search to that threshold and form the final source catalogue. We describe the algorithm used to define a varying threshold that responds to the local, rather than global, noise conditions, and provide examples of its use. And we discuss the approach used to apply two-dimensional fits to detected sources, enabling more accurate parameterisation. These new features are compared for timing performance, where we show that their impact on the pipeline processing will be small, providing room for enhanced algorithms. We also discuss the development process for ASKAP source finding software. By the time of ASKAP operations, the ASKAP science community, through the Survey Science Projects, will have contributed important elements of the source finding pipeline, and the mechanisms in which this will be done are presented.
142 - S. Aigrain , F. Pont , F. Fressin 2009
In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet finding channel, with a particular emphasis on the timescales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the timescales of interest. The bevhaiour of the noise on 2h timescales is well-described a power-law with index 0.25 in R-magnitude, ranging from 0.1mmag at R=11.5 to 1mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence for a slight degradation of the performance over time. We find clear evidence for enhanced variability on hours timescales (at the level of 0.5 mmag) in stars identified as likely giants from their R-magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the direction of Aquila and Monoceros respectively. On the other hand, median correlated noise levels over 2h for dwarf stars are extremely low, reaching 0.05mmag at the bright end.
249 - J. R. Allison 2011
The large spectral bandwidth and wide field of view of the Australian SKA Pathfinder radio telescope will open up a completely new parameter space for large extragalactic HI surveys. Here we focus on identifying and parametrising HI absorption lines which occur in the line of sight towards strong radio continuum sources. We have developed a method for simultaneously finding and fitting HI absorption lines in radio data by using multi-nested sampling, a Bayesian Monte Carlo algorithm. The method is tested on a simulated ASKAP data cube, and is shown to be reliable at detecting absorption lines in low signal-to-noise data without the need to smooth or alter the data. Estimation of the local Bayesian evidence statistic provides a quantitative criterion for assigning significance to a detection and selecting between competing analytical line-profile models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا