The bound state of uclide[6][LambdaLambda]{He} is studied as a three-body ($LambdaLambdaalpha$) system in a cluster effective field theory at leading order (LO). We find that the system exhibits the limit cycle which is associated with the formation of bound states called the Efimov states. This implies that the three-body contact interaction should be promoted to LO. The relationship of the binding energy and the $LambdaLambda$ scattering length is discussed as well as the role of the scale in this system.
We study the 9 Be ground-state energy with non-local ${alpha}-$n and ${alpha}-{alpha}$ potentials derived from Cluster Effective Field Theory. The short-distance dependence of the interaction is regulated with a momentum cutoff. The potential parameters are fitted to reproduce the scattering length and effective range. We implement such potential models in a Non-Symmetrized Hyperspherical Harmonics (NSHH) code in momentum space. In addition we calculate ground state energies of various alpha nuclei. Work is in progress on a calculation of the photodisintegration of 9Be with the Lorentz Integral Transform (LIT) method.
The pole structure of the $Lambda(1405)$ is examined by fitting the couplings of an underlying Hamiltonian effective field theory to cross sections of $K^- p$ scattering in the infinite-volume limit. Finite-volume spectra are then obtained from the theory, and compared to lattice QCD results for the mass of the $Lambda(1405)$. Momentum-dependent, non-separable potentials motivated by the well-known Weinberg-Tomozawa terms are used, with SU(3) flavour symmetry broken in the couplings and masses. In addition, we examine the effect on the behaviour of the spectra from the inclusion of a bare triquark-like isospin-zero basis state. It is found that the cross sections are consistent with the experimental data with two complex poles for the $Lambda(1405)$, regardless of whether a bare baryon basis state is introduced or not. However, it is apparent that the bare baryon is important for describing the results of lattice QCD at high pion masses.
Quark-model hyperon-nucleon and hyperon-hyperon interactions by the Kyoto-Niigata group are applied to the two-Lambda plus alpha system in a new three-cluster Faddeev formalism using two-cluster resonating-group method kernels. The model fss2 gives a reasonable two-Lambda separation energy Delta B_{Lambda Lambda}=1.41 MeV, which is consistent with the recent empirical value, Delta B^{exp}_{Lambda Lambda}=1.01 +/- 0.20 MeV, deduced from the Nagara event. Some important effects that are not taken into account in the present calculation are discussed.
We discuss the formulation of a non-relativistic effective field theory for two-body P-wave scattering in the presence of shallow states and critically address various approaches to renormalization proposed in the literature. It is demonstrated that the consistent renormalization involving only a finite number of parameters in the well-established formalism with auxiliary dimer fields corresponds to the inclusion of an infinite number of counterterms in the formulation with contact interactions only. We also discuss the implications from the Wilsonian renormalization group analysis of P-wave scattering.
We continue our study of effective field theory via homotopy transfer of $L_infty$-algebras, and apply it to tree-level non-Wilsonian effective actions of the kind discussed by Sen in which the modes integrated out are comparable in mass to the modes that are kept. We focus on the construction of effective actions for string states at fixed levels and in particular on the construction of weakly constrained double field theory. With these examples in mind, we discuss closed string theory on toroidal backgrounds and resolve some subtle issues involving vertex operators, including the proper form of cocycle factors and of the reflector state. This resolves outstanding issues concerning the construction of covariant closed string field theory on toroidal backgrounds. The weakly constrained double field theory is formally obtained from closed string field theory on a toroidal background by integrating out all but the doubly massless states and homotopy transfer then gives a prescription for determining the theorys vertices and symmetries. We also discuss consistent truncation in the context of homotopy transfer.