Do you want to publish a course? Click here

AGM2015: Antineutrino Global Map 2015

105   0   0.0 ( 0 )
 Added by Glenn Jocher
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Every second greater than $10^{25}$ antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earths surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earths total antineutrino luminosity at $3.4^{+2.3}_{-2.2} times 10^{25} bar{ u}_e$. We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with $sim1%$ of the total flux from man-made nuclear reactors.



rate research

Read More

368 - Steve Dye , Andrew Barna 2015
Antineutrinos stream freely from rapidly decaying fission products within the cores of nuclear reactors and from long-lived natural radioactivity within the rocky layers of the Earth. These global antineutrinos produce detectable signals in large ultra-clear volumes of water- or hydrocarbon-based target liquids, which are viewed by inward-facing photomultiplier tubes. Detected antineutrinos provide information about their shrouded sources and about the fundamental properties of neutrinos themselves. This paper presents the input data, formulae, and plots resulting from the calculations, which, in addition to the time-dependent reaction rates and energy spectra, model the directions of the antineutrinos from IAEA-registered nuclear power reactors and of the neutrinos from $^8$B decay in the Sun. The model includes estimates of the steady state reaction rates and energy spectra of the antineutrinos from the crust and mantle of the Earth. Results are available for any location near the surface of the Earth and comprise both quasi-elastic scattering on free protons and elastic scattering on atomic electrons. This paper compares model results for two underground locations, the Boulby Mine in the United Kingdom and the Morton Salt Mine in the United States. Operational nuclear power reactors are within about $20$ kilometers of these mines, making them candidate sites for antineutrino detectors capable of identifying, monitoring, and locating remote nuclear activity. The model, which is implemented in a web application at https://geoneutrinos.org/reactors/, provides references for the input data and the formulae, as well as an interactive calculator of the significance of the rate of any of the neutrino sources relative to other sources taken as background.
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make both a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and to probe eV-scale sterile neutrinos by searching for neutrino oscillations over meter-long baselines. PROSPECT utilizes a segmented $^6$Li-doped liquid scintillator detector for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT is a movable 4-ton antineutrino detector covering distances of 7m to 13m from the High Flux Isotope Reactor core. It will probe the best-fit point of the $bar u_e$ disappearance experiments at 4$sigma$ in 1 year and the favored regions of the sterile neutrino parameter space at more than 3$sigma$ in 3 years. PROSPECT will test the origin of spectral deviations observed in recent $theta_{13}$ experiments, search for sterile neutrinos, and address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly. This paper describes the design, construction, and commissioning of PROSPECT and reports first data characterizing the performance of the PROSPECT antineutrino detector.
76 - X.B. Ma , Y.F. Zhao , Y.X. Chen 2015
Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution from SNF is about 3.0%, but there is 18% difference between line evaluate method and under evaluate method. In addition, non-equilibrium effects are also discussed, and the results are compatible with theirs considering the uncertainties.
84 - Y. Abreu , Y. Amhis , L. Arnold 2017
The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with $^6$LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisation of scintillation signals, making efficient use of the detector volume. Monte Carlo simulations indicate that a neutron capture efficiency of over 70% is achievable with a sufficient number of $^6$LiF:ZnS(Ag) screens per cube and that an appropriate segmentation enables a measurement of the positron energy which is not limited by gamma-ray leakage. First measurements of a single cell indicate that a very good neutron-gamma discrimination and high neutron detection efficiency can be obtained with adequate triggering techniques. The light yield from positron signals has been measured, showing that an energy resolution of 14%/$sqrt{E({mathrm{MeV}})}$ is achievable with high uniformity. A preliminary neutrino signal analysis has been developed, using selection criteria for pulse shape, energy, time structure and energy spatial distribution and showing that an antineutrino efficiency of 40% can be achieved. It also shows that the fine segmentation of the detector can be used to significantly decrease both correlated and accidental backgrounds.
133 - Steve Dye 2017
Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This paper presents calculations of reactor antineutrino interactions from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering in a water-based detector operated $gtrsim10$ km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are differential and integral interaction rates from the quasi-elastic and elastic processes. There are two underground facilities capable of hosting a detector ($sim1$ kT H$_2$O) project nearby ($Lsim20$ km) an operating commercial reactor ($P_{th}sim3$ GW). These reactor-site combinations, which are under consideration for project WATCHMAN, are Perry-Morton on the southern shore of Lake Erie in the United States and Hartlepool-Boulby on the western shore of the North Sea in England. The signal rate from the proximal reactor is about five times greater at the Morton site than at the Boulby site due to shorter reactor-site separation distance, larger reactor thermal power, and greater neutrino oscillation survival probability. Although the background rate from all other reactors is larger at Morton than at Boulby, it is a smaller fraction of the signal rate from the proximal reactor at Morton than at Boulby. Moreover, the Hartlepool power plant has two cores whereas the Perry plant has a single core. The Boulby site, therefore, offers an opportunity for remotely monitoring the on/off cycle of a reactor core under more stringent conditions than does the Morton site.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا