No Arabic abstract
An open problem in evolutionary game dynamics is to understand the effect of peer pressure on cooperation in a quantitative manner. Peer pressure can be modeled by punishment, which has been proved to be an effective mechanism to sustain cooperation among selfish individuals. We investigate a symmetric punishment strategy, in which an individual will punish each neighbor if their strategies are different, and vice versa. Because of the symmetry in imposing the punishment, one might expect intuitively the strategy to have little effect on cooperation. Utilizing the prisoners dilemma game as a prototypical model of interactions at the individual level, we find, through simulation and theoretical analysis, that proper punishment, when even symmetrically imposed on individuals, can enhance cooperation. Besides, we find that the initial density of cooperators plays an important role in the evolution of cooperation driven by mutual punishment.
A multiagent based model for a system of cooperative agents aiming at growth is proposed. This is based on a set of generalized Verhulst-Lotka-Volterra differential equations. In this study, strong cooperation is allowed among agents having similar sizes, and weak cooperation if agent have markedly different sizes, thus establishing a peer-to-peer modulated interaction scheme. A rigorous analysis of the stable configurations is presented first examining the fixed points of the system, next determining their stability as a function of the model parameters. It is found that the agents are self-organizing into clusters. Furthermore, it is demonstrated that, depending on parameter values, multiple stable configurations can coexist. It occurs that only one of them always emerges with probability close to one, because its associated attractor dominates over the rest. This is shown through numerical integrations and simulations,after analytic developments. In contrast to the competitive case, agents are able to increase their capacity beyond the no-interaction case limit. In other words, when some collaborative partnership among a relatively small number of partners takes place, all agents act in good faith prioritizing the common good, whence receiving a mutual benefit allowing them to surpass their capacity.
Revolution dynamics is studied through a minimal Ising model with three main influences (fields): personal conservatism (power-law distributed), inter-personal and group pressure, and a global field incorporating peer-to-peer and mass communications, which is generated bottom-up from the revolutionary faction. A rich phase diagram appears separating possible terminal stages of the revolution, characterizing failure phases by the features of the individuals who had joined the revolution. An exhaustive solution of the model is produced, allowing predictions to be made on the revolutions outcome.
Personal responsibility, one of the basic principles of modern law, requires one to be responsible for what he did. However, personal responsibility is far from the only norm ruling human interactions, especially in social and economic activities. In many collective communities such as among enterprise colleagues and family members, ones personal interests are often bound to others -- once one member breaks the rule, a group of people have to bear the punishment or sanction. Such a mechanism is termed joint liability. Although many real-world cases have demonstrated that joint liability helps to maintain collective collaboration, a deep and systematic theoretical analysis on how and when joint liability promotes cooperation is lacking. Here we use evolutionary game theory to model an interacting system with joint liability, where ones losing credit could deteriorate the reputation of the whole group. We provide the analytical condition to predict when cooperation evolves in the presence of joint liability, which is verified by simulations. We also analytically prove that joint liability can greatly promote cooperation. Our work stresses that joint liability is of great significance in promoting the current economic propensity.
In the framework of the evolutionary dynamics of the Prisoners Dilemma game on complex networks, we investigate the possibility that the average level of cooperation shows hysteresis under quasi-static variations of a model parameter (the temptation to defect). Under the discrete replicator strategy updating rule, for both Erdos-Renyi and Barabasi-Albert graphs we observe cooperation hysteresis cycles provided one reaches tipping point values of the parameter; otherwise, perfect reversibility is obtained. The selective fixation of cooperation at certain nodes and its organization in cooperator clusters, that are surrounded by fluctuating strategists, allows the rationalization of the lagging behind behavior observed.
The mitigation of the effects of climate change on humankind is one of the most pressing and important collective governance problems nowadays$^{1-4}$. To explore different solutions and scenarios, previous works have framed this problem into a Public Goods Game (PGG), where a dilemma between short-term interests and long-term sustainability arises$^{5-9}$. In such a context, subjects are placed in groups and play a PGG with the aim of avoiding dangerous climate change impact. Here we report on a lab experiment designed to explore two important ingredients: costly punishment to free-riders and group size. Our results show that for high punishment risk, more groups succeed in achieving the global target, this finding being robust against group size. Interestingly enough, we also find a non-trivial effect of the size of the groups: the larger the size of the groups facing the dilemmas, the higher the punishment risk should be to achieve the desired goal. Overall, the results of the present study shed more light into possible deterrent effects of plausible measures that can be put in place when negotiating climate treaties and provide more hints regarding climate-related policies and strategies.