Do you want to publish a course? Click here

Steady-state analysis of shortest expected delay routing

101   0   0.0 ( 0 )
 Added by Jori Selen
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider a queueing system consisting of two non-identical exponential servers, where each server has its own dedicated queue and serves the customers in that queue FCFS. Customers arrive according to a Poisson process and join the queue promising the shortest expected delay, which is a natural and near-optimal policy for systems with non-identical servers. This system can be modeled as an inhomogeneous random walk in the quadrant. By stretching the boundaries of the compensation approach we prove that the equilibrium distribution of this random walk can be expressed as a series of product-forms that can be determined recursively. The resulting series expression is directly amenable for numerical calculations and it also provides insight in the asymptotic behavior of the equilibrium probabilities as one of the state coordinates tends to infinity.



rate research

Read More

We analyze an interacting queueing network on $mathbb{Z}^d$ that was introduced in Sankararaman-Baccelli-Foss (2019) as a model for wireless networks. We show that the marginals of the minimal stationary distribution have exponential tails. This is used to furnish asymptotics for the maximum steady state queue length in growing boxes around the origin. We also establish a decay of correlations which shows that the minimal stationary distribution is strongly mixing, and hence, ergodic with respect to translations on $mathbb{Z}^d$.
85 - Xin Liu , Kang Gong , Lei Ying 2020
This paper studies load balancing for many-server ($N$ servers) systems. Each server has a buffer of size $b-1,$ and can have at most one job in service and $b-1$ jobs in the buffer. The service time of a job follows the Coxian-2 distribution. We focus on steady-state performance of load balancing policies in the heavy traffic regime such that the normalized load of system is $lambda = 1 - N^{-alpha}$ for $0<alpha<0.5.$ We identify a set of policies that achieve asymptotic zero waiting. The set of policies include several classical policies such as join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ), idle-one-first (I1F) and power-of-$d$-choices (Po$d$) with $d=O(N^alphalog N)$. The proof of the main result is based on Steins method and state space collapse. A key technical contribution of this paper is the iterative state space collapse approach that leads to a simple generator approximation when applying Steins method.
We consider a discrete-time Markov chain $boldsymbol{Phi}$ on a general state-space ${sf X}$, whose transition probabilities are parameterized by a real-valued vector $boldsymbol{theta}$. Under the assumption that $boldsymbol{Phi}$ is geometrically ergodic with corresponding stationary distribution $pi(boldsymbol{theta})$, we are interested in estimating the gradient $ abla alpha(boldsymbol{theta})$ of the steady-state expectation $$alpha(boldsymbol{theta}) = pi( boldsymbol{theta}) f.$$ To this end, we first give sufficient conditions for the differentiability of $alpha(boldsymbol{theta})$ and for the calculation of its gradient via a sequence of finite horizon expectations. We then propose two different likelihood ratio estimators and analyze their limiting behavior.
The scope of this work is twofold: On the one hand, strongly motivated by emerging engineering issues in multiple access communication systems, we investigate the performance of a slotted-time relay-assisted cooperative random access wireless network with collisions and with join the shortest queue relay-routing protocol. For this model, we investigate the stability condition, and apply different methods to derive the joint equilibrium distribution of the queue lengths. On the other hand, using the cooperative communication system as a vehicle for illustration, we investigate and compare three different approaches for this type of multi-dimensional stochastic processes, namely the compensation approach, the power series algorithm (PSA), and the probability generating function (PGF) approach. We present an extensive numerical comparison of the compensation approach and PSA, and discuss which method performs better in terms of accuracy and computation time. We also provide details on how to compute the PGF in terms of a solution of a Riemann-Hilbert boundary value problem.
Let $(M,g_1)$ be a complete $d$-dimensional Riemannian manifold for $d > 1$. Let $mathcal X_n$ be a set of $n$ sample points in $M$ drawn randomly from a smooth Lebesgue density $f$ supported in $M$. Let $x,y$ be two points in $M$. We prove that the normalized length of the power-weighted shortest path between $x, y$ through $mathcal X_n$ converges almost surely to a constant multiple of the Riemannian distance between $x,y$ under the metric tensor $g_p = f^{2(1-p)/d} g_1$, where $p > 1$ is the power parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا