Electronic and Magnetic Properties of 1T-TiSe2 Nanoribbons


Abstract in English

Motivated by the recent synthesis of single layer TiSe2 , we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair- edged nanoribbons of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 nanoribbons have some distinctive properties. The electronic band gap of the nanoribbons decreases exponentially with the width and vanishes for ribbons wider than 20 Angstroms. For ultranarrow zigzag-edged nanoribbons we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have nonmagnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase nanoribbons of similar crystal structures.

Download