Do you want to publish a course? Click here

Generation of high-frequency strain waves during femtosecond demagnetization of Fe/MgO films

104   0   0.0 ( 0 )
 Added by Hermann Durr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons excited during ultrafast laser demagnetization of bcc Fe films. We determine the lattice strain propagating through the film through analysis of the oscillations in the x-ray scattering signal as a function of momentum transfer. The width of the strain wavefront is ~100 fs, similar to demagnetization timescales. First-principles calculations show that the high-frequency Fourier components of the strain, which give rise to the sharp wavefront, could in part originate from non-thermal dynamics of the lattice not considered in the two-temperature model.



rate research

Read More

Spin and orbital angular momenta are two intrinsic properties of an electron and are responsible for the physics of a solid. How the spin and orbital evolve with respect to each other on several hundred femtoseconds is largely unknown, but it is at the center of laser-induced ultrafast demagnetization. In this paper, we introduce a concept of the spin-orbital correlation diagram, where spin angular momentum is plotted against orbital angular momentum, much like the position-velocity phase diagram in classical mechanics. We use four sets of highly accurate time-resolved x-ray magnetic circular dichroism (TR-XMCD) data to construct four correlation diagrams for iron and cobalt. To our surprise, a pattern emerges. The trace on the correlation diagram for iron is an arc, and at the end of demagnetization, it has a pronounced cusp. The correlation diagram for cobalt is different and appears more linear, but with kinks. We carry out first-principles calculations with two different methods: time-dependent density functional theory (TDDFT) and time-dependent Liouville density functional theory (TDLDFT). These two methods agree that the experimental findings for both Fe and Co are not due t experimental errors. It is the spin-orbit coupling that correlates the spin dynamics to the orbital dynamics.Microscopically, Fe and Co have different orbital occupations, which leads to distinctive correlation diagrams. We believe that this correlation diagram presents a useful tool to better understand spin and orbital dynamics on an ultrafast time scale. A brief discussion on the magnetic anisotropy energy is also provided.
105 - R. Knut 2018
Ni$_{0.8}$Fe$_{0.2}$ (Py) and Py alloyed with Cu exhibit intriguing ultrafast demagnetization behavior, where the Ni magnetic moment shows a delayed response relative to the Fe, an effect which is strongly enhanced by Cu alloying. We have studied a broad range of Cu concentrations to elucidate the effects of Cu alloying in Py. The orbital/spin magnetic moment ratios are largely unaffected by Cu alloying, signifying that Cu-induced changes in the ultrafast demagnetization are not related to spin-orbit interactions. We show that magnon diffusion can explain the delayed Ni response, which we attribute to an enhanced magnon generation rate in the Fe sublattice relative to the Ni sublattice. Furthermore, Py exhibits prominent RKKY-like exchange interactions, which are strongly enhanced between Fe atoms and diminished between Ni atoms by Cu alloying. An increased Fe magnon scattering rate is expected to occur concurrently with this increased Fe-Fe exchange interaction, supporting the results obtained from the magnon diffusion model.
270 - J. Wang , L. Cywinski , C. Sun 2008
We have studied ultrafast photoinduced demagnetization in GaMnAs via two-color time-resolved magneto-optical Kerr spectroscopy. Below-bandgap midinfrared pump pulses strongly excite the valence band, while near-infrared probe pulses reveal sub-picosecond demagnetization that is followed by an ultrafast ($sim$1 ps) partial recovery of the Kerr signal. Through comparison with InMnAs, we attribute the signal recovery to an ultrafast energy relaxation of holes. We propose that the dynamical polarization of holes through $p$-$d$ scattering is the source of the observed probe signal. These results support the physical picture of femtosecond demagnetization proposed earlier for InMnAs, identifying the critical roles of both energy and spin relaxation of hot holes.
The mechanism underlying femtosecond laser pulse induced ultrafast magnetization dynamics remains elusive despite two decades of intense research on this phenomenon. Most experiments focused so far on characterizing magnetization and charge carrier dynamics, while first direct measurements of structural dynamics during ultrafast demagnetization were reported only very recently. We here present our investigation of the infrared laser pulse induced ultrafast demagnetization process in a thin Ni film, which characterizes simultaneously magnetization and structural dynamics. This is achieved by employing femtosecond time resolved X-ray resonant magnetic reflectivity (tr-XRMR) as probe technique. The experimental results reveal unambiguously that the sub-picosecond magnetization quenching is accompanied by strong changes in non-magnetic X-ray reflectivity. These changes vary with reflection angle and changes up to 30$%$ have been observed. Modeling the X-ray reflectivity of the investigated thin film, we can reproduce these changes by a variation of the apparent Ni layer thickness of up to 1$%$. Extending these simulations to larger incidence angles we show that tr-XRMR can be employed to discriminate experimentally between currently discussed models describing the ultrafast demagnetization phenomenon.
Magnetic phenomena are ubiquitous in our surroundings and indispensable for modern science and technology, but it is notoriously difficult to change the magnetic order of a material in a rapid way. However, if a thin nickel film is subjected to ultrashort laser pulses, it can lose its magnetic order almost completely within merely femtosecond times. This phenomenon, in the meantime also observed in many other materials, has connected magnetism with femtosecond optics in an efficient, ultrafast and complex way, offering opportunities for rapid information processing or ultrafast spintronics at frequencies approaching those of light. Consequently, the physics of ultrafast demagnetization is central to modern material research, but a crucial question has remained elusive: If a material loses its magnetization within only femtoseconds, where is the missing angular momentum in such short time? Here we use ultrafast electron diffraction to reveal in nickel an almost instantaneous, long-lasting, non-equilibrium population of anisotropic high-frequency phonons that appear as quickly as the magnetic order is lost. The anisotropy plane is perpendicular to the direction of the initial magnetization and the atomic oscillation amplitude is 2 pm. We explain these observations by means of circularly polarized phonons that quickly absorb the missing angular momentum of the spin system before the slower onset of a macroscopic sample rotation. The time that is needed for demagnetization is related to the time it takes to accelerate the atoms. These results provide an atomistic picture of ultrafast demagnetization under adherence to all conservation laws but also demonstrate the general importance of polarized phonons for non-equilibrium dynamics and provide innovative ways for controlling materials on atomic dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا