Counting self-avoiding walks on free products of graphs


Abstract in English

The connective constant $mu(G)$ of a graph $G$ is the asymptotic growth rate of the number $sigma_{n}$ of self-avoiding walks of length $n$ in $G$ from a given vertex. We prove a formula for the connective constant for free products of quasi-transitive graphs and show that $sigma_{n}sim A_{G} mu(G)^{n}$ for some constant $A_{G}$ that depends on $G$. In the case of finite products $mu(G)$ can be calculated explicitly and is shown to be an algebraic number.

Download