Do you want to publish a course? Click here

Variation after full projection with triaxially deformed nuclear mean field

129   0   0.0 ( 0 )
 Added by Zao-Chun Gao
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We implemented a variation after projection (VAP) algorithm based on a triaxially deformed Hartree-Fock-Bogoliubov vacuum state. This is the first projected mean field study that includes all the quantum numbers (except parity), i.e., spin ($J$), isospin ($T$) and mass number ($A$). Systematic VAP calculations with $JTA$-projection have been performed for the even-even $sd$-shell nuclei with the USDB Hamiltonian. All the VAP ground state energies are within 500 keV above the exact shell model values. Our VAP calculations show that the spin projection has two important effects: (1) the spin projection is crucial in achieving good approximation of the full shell model calculation. (2) the intrinsic shapes of the VAP wavefunctions with spin projection are always triaxial, while the Hartree-Fock-Bogoliubov methods likely provide axial intrinsic shapes. Finally, our analysis suggests that one may not be possible to associate an intrinsic shape to an exact shell model wave function.



rate research

Read More

Rotation of triaxially deformed nucleus has been an interesting subject in the study of nuclear structure. In the present series of work, we investigate wobbling motion and chiral rotation by employing the microscopic framework of angular-momentum projection from cranked triaxially deformed mean-field states. In this first part the wobbling motion is studied in detail. The consequences of the three dimensional cranking are investigated. It is demonstrated that the multiple wobbling rotational bands naturally appear as a result of fully microscopic calculation. They have the characteristic properties, that are expected from the macroscopic triaxial-rotor model or the phenomenological particle-triaxial-rotor model, although quantitative agreement with the existing data is not achieved. It is also found that the excitation spectrum reflects dynamics of the angular-momentum vector in the intrinsic frame of the mean-field (transverse vs. longitudinal wobbling). The results obtained by using the Woods-Saxon potential and the schematic separable interaction are mainly discussed, while some results with the Gogny D1S interaction are also presented.
74 - Yue Shi 2019
The survey of different configurations near Fermi surface of 138Nd results in 12 lowest configurations, at both positive- and negative-deformations. These are calculated to be the energetically lowest configurations. The results show that, for both EDFs, the rotational states based on positive-minimum, which is at gamma~35, are lower than the respective configurations with negative-deformation. The general trends of the spin-versus-omega curve, and the energy-versus-spin curve reproduce well those of the experimental data. Further, for the observed bands `T1-T8, the calculated results using SLy4L allows the configurations of the observed bands to be assigned. The calculations predict transitional quadrupole moments, which can be used to compare with future experimental data. The current cranked self-consistent mean-field calculations of the near-yrast high-spin rotational bands in 138Nd reproduce well the experimental data. The results suggest that the experimentally observed bands can be assigned to the calculated bands with various configurations at the positive-deformation. The predictions of the current calculations are complementary to that of the well-know macroscopic-microscopic calculations, both of which await future experiment to verify.
We present a novel and simple algorithm in the variation after projection (VAP) approach for the non-yrast nuclear states. It is for the first time that the yrast state and non-yrast states can be varied on the same footing. The orthogonality among the calculated states is automatically fulfilled by solving the Hill-Wheeler equation. This avoids the complexity of the frequently used Gram-Schmidt orthogonalization, as adopted by the excited VAMPIR method. Thanks to the Cauchys interlacing theorem in the matrix theory, the sum of the calculated lowest projected energies with the same quantum numbers can be safely minimized. Once such minimization is converged, all the calculated energies and the corresponding states can be obtained, simultaneously. The present VAP calculations are performed with time-odd Hartree-Fock Slater determinants. It is shown that the calculated VAP energies (both yrast and non-yrast) are very close to the corresponding ones from the full shell model calculations. It looks the present algorithm is not limited to the VAP, but should be universal, i.e., one can do the variation with different forms of the many-body wavefunctions to calculate the excited states in different quantum many-body systems.
63 - Zao-Chun Gao 2021
Projection is noninvertible. This means two different vectors may have the same projected components. In nuclear case, one may take the intrinsic state as a vector, and take the nuclear wave function as the projected component obtained by projecting the former onto good quantum numbers. This immediately comes to the conclusion that, for a given nuclear state in the laboratory frame of reference, the corresponding intrinsic state in the intrinsic frame of reference can not be uniquely determined. In this letter, I will show this interesting phenomenon explicitly based on the improved variation after projection(VAP) method. First of all, it is found that, the form of the trial VAP wavefunction with spin $J$ can be greatly simplified by adopting just one projected state rather than previously adopting all $(2J+1)$ spin-projected states for each selected Slater determinant. This is crucial in the calculations of high-spin states with arbitrary intrinsic Slater determinants. Based on this simplified VAP, the present calculations show that orthogonal intrinsic states (differed by $K$) may have almost the same projected wavefunctions, indicating the uncertainty of the nuclear intrinsic states. This is quite different from the traditional concept of intrinsic state which is expected to be unique.
The effective field theory for collective rotations of triaxially deformed nuclei is generalized to odd-mass nuclei by including the angular momentum of the valence nucleon as an additional degree of freedom. The Hamiltonian is constructed up to next-to-leading order within the effective field theory formalism. The applicability of this Hamiltonian is examined by describing the wobbling bands observed in the lutetium isotopes $^{161,163,165,167}$Lu. It is found that by taking into account the next-to-leading order corrections, quartic in the rotor angular momentum, the wobbling energies $E_{textrm{wob}}$ and spin-rotational frequency relations $omega(I)$ are better described than with the leading order Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا