Do you want to publish a course? Click here

Finding Wolf-Rayet Stars in the Milky Way: Inputs to Star Formation and Stellar Evolution

72   0   0.0 ( 0 )
 Added by Anthony Marston
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The total population of Wolf-Rayet (WR) stars in the Galaxy is predicted by models to be as many as $sim$6000 stars, and yet the number of catalogued WR stars as a result of optical surveys was far lower than this ($sim$200) at the turn of this century. When beginning our WR searches using infrared techniques it was not clear whether WR number predictions were too optimistic or whether there was more hidden behind interstellar and circumstellar extinction. During the last decade we pioneered a technique of exploiting the near- and mid-infrared continuum colours for individual point sources provided by large-format surveys of the Galaxy, including 2MASS and Spitzer/GLIMPSE, to pierce through the dust and reveal newly discovered WR stars throughout the Galactic Plane. The key item to the colour discrimination is via the characteristic infrared spectral index produced by the strong winds of the WR stars, combined with dust extinction, which place WR stars in a relatively depopulated area of infrared colour-colour diagrams. The use of the Spitzer/GLIMPSE 8$mu$m and, more recently, WISE 22$mu$m fluxes together with cross-referencing with X-ray measurements in selected Galactic regions have enabled improved candidate lists that increased our confirmation success rate, achieved via follow-up infrared and optical spectroscopy. To date a total of 102 new WR stars have been found with many more candidates still available for follow-up. This constitutes an addition of $sim$16% to the current inventory of 642 Galactic WR stars. In this talk we review our methods and provide some new results and a preliminary review of their stellar and interstellar medium environments. We provide a roadmap for the future of this search, including statistical modeling, and what we can add to star formation and high mass star evolution studies.



rate research

Read More

233 - Wei Zhang , Helge Todt , Hong Wu 2020
We report the discovery of a new transition type Wolf-Rayet (WR) WN/C star in the Galaxy. According to its coordinates (R.A., Dec)J2000 = 18h51m39.7s, -05d34m51.1s, and the distance (7.11 kpc away from Earth) inferred from the second Gaia, data release, its found that WR 121-16 is located in the Far 3 kpc Arm, and it is 3.75 kpc away from the Galactic Center. The optical spectra obtained by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and the 2.16 m telescope, both located at the Xinglong Observatory in China, indicate that this is a WR star of the transitional WN7o/WC subtype. A current stellar mass of about 7.1 M_solar, a mass-loss rate of M_dot = 10^(-4.97) M_solar/yr, a bolometric luminosity of log L/L_solar = 4.88, and a stellar temperature of T_* = 47 kK are derived, by fitting the observed spectrum with a specific Potsdam Wolf-Rayet (PoWR) model. The magnitude in V-band varies between 13.95 and 14.14 mag, while no period is found. Based on the optical spectra, the time domain data, and the indices of the astrometric solution of the Gaia data, WR 121-16 is likely a transitional WN/C single star rather than a WN+WC binary.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
93 - R. Kurtev 2007
Young massive clusters are perfect astrophysical laboratories for study of massive stars. Clusters with Wolf-Rayet (WR) stars are of special importance, since this enables us to study a coeval WR population at a uniform metallicity and known age. GLIMPSE30 (G30) is one of them. The cluster is situated near the Galactic plane (l=298.756deg, b=-0.408deg) and we aimed to determine its physical parameters and to investigate its high-mass stellar content and especially WR stars. Our analysis is based on SOFI/NTT JsHKs imaging and low resolution (R~2000) spectroscopy of the brightest cluster members in the K atmospheric window. For the age determination we applied isochrone fits for MS and Pre-MS stars. We derived stellar parameters of the WR stars candidates using a full nonLTE modeling of the observed spectra. Using a variety of techniques we found that G30 is very young cluster, with age t~4Myr. The cluster is located in Carina spiral arm, it is deeply embedded in dust and suffers reddening of Av~10.5+-1.1mag. The distance to the object is d=7.2+-0.9kpc. The mass of the cluster members down to 2.35Msol is ~1600Msol. Clusters MF for the mass range of 5.6 to 31.6Msol shows a slope of Gamma=-1.01+-0.03. The total mass of the cluster obtained by this MF down to 1Msol is about 3x10^3Msol. The spectral analysis and the models allow us to conclude that in G30 are at least one Ofpe/WN and two WR stars. The WR stars are of WN6-7 hydrogen rich type with progenitor masses more than 60Msol. G30 is a new member of the exquisite family of young Galactic clusters, hosting WR stars. It is a factor of two to three less massive than some of the youngest super-massive star clusters like Arches, Quintuplet and Central cluster and is their smaller analog.
84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn into an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
94 - D. M.-A. Meyer 2020
Wolf-Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them display a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations of circumstellar matter around a 60Mo runaway star show that the fast Wolf-Rayet stellar wind is released into a wind-blown cavity filled with various shocks and discontinuities generated throughout the precedent evolutionary phases. The resulting fast-wind slow-wind interaction leads to the formation of spherical shells of swept-up dusty material similar to those observed in near infrared 24 micron with Spitzer, and which appear to be co-moving with the runaway massive stars, regardless of their proper motion and/or the properties of the local ambient medium. We interpret bright infrared rings around runaway Wolf-Rayet stars in the Galactic plane, like WR138a, as indication of their very high initial masses and a complex evolutionary history. Stellar-wind bow shocks become faint as stars run in diluted media, therefore, our results explain the absence of detected bow shocks around Galactic Wolf-Rayet stars such as the high-latitude, very fast-moving objects WR71, WR124 and WR148. Our results show that the absence of a bow shock is consistent with a runaway nature of some Wolf-Rayet stars. This questions the in-situ star formation scenario of high-latitude Wolf-Rayet stars in favor of dynamical ejection from birth sites in the Galactic plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا