No Arabic abstract
We present Sunyaev-Zeldovich (SZ) effect measurements from wide-field images towards the galaxy cluster RX J1347.5-1145 obtained from the Caltech Submillimeter Observatory with the Multiwavelength Submillimeter Inductance Camera (MUSIC) at 147, 213, 281, and 337 GHz and with Bolocam at 140 GHz. As part of our analysis, we have used higher frequency data from Herschel-SPIRE and previously published lower frequency radio data to subtract the signal from the brightest dusty star-forming galaxies behind RX J1347.5-1145 and from the AGN in RX J1347.5-1145s BCG. Using these five-band SZ effect images, combined with X-ray spectroscopic measurements of the temperature of the intra-cluster medium (ICM) from Chandra, we constrain the ICM optical depth to be $tau_e = 7.33^{+0.96}_{-0.97} times 10^{-3}$ and the ICM line of sight peculiar velocity to be $v_{pec} = -1040^{+870}_{-840}$ km s$^{-1}$. The errors for both quantities are limited by measurement noise rather than calibration uncertainties or astrophysical contamination, and significant improvements are possible with deeper observations. Our best-fit velocity is in good agreement with one previously published SZ effect analysis and in mild tension with the other, although some or all of that tension may be because that measurement samples a much smaller cluster volume. Furthermore, our best-fit optical depth implies a gas mass slightly larger than the Chandra-derived value, implying the cluster is elongated along the line of sight.
We present a revised strong lensing mass reconstruction of the galaxy cluster RX J1347.5-1145. The X-ray luminous cluster at redshift z=0.451 has already been studied intensively in the past. Based on information of two such previous (strong-)lensing studies by Halkola et al. (2008) and Bradac et al. (2008), as well as by incorporating newly available data from the Cluster Lensing And Supernovae survey with Hubble (CLASH, Postman et al. 2012), we identified four systems of multiply lensed images (anew) in the redshift range 1.75 <= z <= 4.19. One multiple image system consists of in total eight multiply lensed images of the same source. The analysis based on a parametric mass model derived with the software glafic (Oguri 2010) suggests that the high image multiplicity is due to the source (z_phot = 4.19) being located on a so-called swallowtail caustic. In addition to the parametric mass model, we also employed a non-parametric approach using the software PixeLens (Saha and Williams 1997, 2004) in order to reconstruct the projected mass of the cluster using the same strong lensing data input. Both reconstructed mass models agree in revealing several mass components and a highly elliptic shape of the mass distribution. Furthermore, the projected mass inside, for example, a radius R ~35 arcsec ~200 kpc of the cluster for a source at redshift z=1.75 obtained with PixeLens exceeds the glafic estimate within the same radius by about 13 per cent. The difference could be related to the fundamental degeneracy involved when constraining dark matter substructures with gravitationally lensed arcs.
We present the results from the analysis of long Suzaku observations of the most X-ray luminous galaxy cluster RX J1347.5-1145 at z=0.451. Aims: We study physical properties of the hot (~20 keV) gas clump in the south-east (SE) region discovered by the Sunyaev-Zeldovich (SZ) effect observations, to understand the gas physics of a violent cluster merger. We also explore a signature of non-thermal emission using the hard X-ray data. Results: We find that the single-temperature model fails to reproduce the continuum emission and Fe-K lines measured by XIS simultaneously. The two-temperature model with a very hot component improves the fit, although the XIS data can only give a lower bound on its temperature. We detect the hard X-ray emission in the 12-40 keV band at the 7 sigma level; however, the significance becomes marginal when the systematic error in the background estimation is included. With the Suzaku + Chandra joint analysis, we determine the temperature of the SE excess component to be 25.3^{+6.1}_{-4.5} ^{+6.9}_{-9.5} keV (90% statistical and systematic errors), which is in an excellent agreement with the previous SZ + X-ray analysis. This is the first time that the X-ray spectroscopy alone gives a good measurement of the temperature of the hot component in the SE region, which is made possible by Suzakus unprecedented sensitivity to the wide X-ray band. These results strongly indicate that the cluster has undergone a recent, violent merger. The spectral analysis shows that the SE component is consistent with being thermal. We find the 3 sigma upper limit on the non-thermal flux, F < 8e-12 erg s^{-1} cm^{-2} in the 12-60 keV band. Combining this limit with a recent discovery of the radio mini halo at 1.4 GHz, we find a lower limit on the strength of the intracluster magnetic field, B > 0.007 micro G.
We perform a combined X-ray and strong lensing analysis of RX J1347.5-1145, one of the most luminous galaxy clusters at X-ray wavelengths. We show that evidence from strong lensing alone, based on published VLT and new HST data, strongly argues in favor of a complex structure. The analysis takes into account arc positions, shapes and orientations and is done thoroughly in the image plane. The cluster inner regions are well fitted by a bimodal mass distribution, with a total projected mass of $M_{tot} = (9.9 pm 0.3)times 10^{14} M_odot/h$ within a radius of $360 mathrm{kpc}/h$ ($1.5$). Such a complex structure could be a signature of a recent major merger as further supported by X-ray data. A temperature map of the cluster, based on deep Chandra observations, reveals a hot front located between the first main component and an X-ray emitting South Eastern sub-clump. The map also unveils a filament of cold gas in the innermost regions of the cluster, most probably a cooling wake caused by the motion of the cD inside the cool core region. A merger scenario in the plane of the sky between two dark matter sub-clumps is consistent with both our lensing and X-ray analyses, and can explain previous discrepancies with mass estimates based on the virial theorem.
We describe Sunyaev-Zeldovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We have used masses determined from Chandra X-ray observations to scale each clusters profile by the overdensity radius R500 and the mass-and-redshift-dependent normalization factor P500. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R500 and 3.5R500. We find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C500, alpha, beta, gamma, P0 = 1.18, 0.86, 3.67, 0.67, 4.29). We also use the X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that given the precision of our data the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R>~0.15R500, with cool-core systems showing indications of higher pressure at R<~0.15R500. In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R500 and 2.0R500. The scatter among profiles is minimized at radii between ~0.2R500 and ~0.5R500, with a value of ~20%. The best-fit mass scaling has a power-law slope of 0.49, which is shallower than the nominal prediction of 2/3 from self-similar hydrostatic equilibrium models. These results for the intrinsic scatter and mass scaling are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample.
We present Bolocam observations of two galaxy cluster candidates reported as unconfirmed in the Planck early Sunyaev-Zeldovich (eSZ) sample, PLCKESZ G115.71+17.52 and PLCKESZ G189.84-37.24. We observed each of these candidates with Bolocam at 140 GHz from the Caltech Submm Observatory in October 2011. The resulting images have white noise levels of ~30 {mu}KCMB-arcmin in their central regions. We find a significant SZ decrement towards PLCKESZ G115.71. This decrement has a false detection probability of 5.3times10-5, and we therefore confirm PLCKESZ G115.71 as a cluster. The maximum SZ decrement towards PLCKESZ G189.84 corresponds to a false detection probability of 0.027, and it therefore remains as an unconfirmed cluster candidate. In order to make our SZ-derived results more robust, we have also analyzed data from the Wide-field Infrared Survey Explorer (WISE) at the location of each cluster candidate. We find an overdensity of WISE sources consistent with other clusters in the eSZ at the location of PLCKESZ G115.71, providing further evidence that it is a cluster. We do not find a significant overdensity of WISE sources at the location of PLCKESZ G189.84.