Do you want to publish a course? Click here

Contemporary continuum QCD approaches to excited hadrons

81   0   0.0 ( 0 )
 Added by Bruno El-Bennich
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Amongst the bound states produced by the strong interaction, radially excited meson and nucleon states offer an important phenomenological window into the long-range behavior of the coupling constant in Quantum Chromodynamics. We here report on some technical details related to the computation of the bound states eigenvalue spectrum in the framework of Bethe-Salpeter and Faddeev equations.



rate research

Read More

We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.
We highlight Hermiticity issues in bound-state equations whose kernels are subject to a highly asymmetric mass and momentum distribution and whose eigenvalue spectrum becomes complex for radially excited states. We trace back the presence of imaginary components in the eigenvalues and wave functions to truncation artifacts and suggest how they can be eliminated in the case of charmed mesons. The solutions of the gap equation in the complex plane, which play a crucial role in the analytic structure of the Bethe-Salpeter kernel, are discussed for several interaction models and qualitatively and quantitatively compared to analytic continuations by means of complex-conjugate pole models fitted to real solutions.
An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of the lattice, the eigenstates of the Hamiltonian model can be related to the energy eigenstates observed in Lattice simulations. By taking the infinite-volume limit of HEFT, information from the lattice is linked to experiment. The approach opens a new window for the study of experimentally-observed resonances from the first principles of lattice QCD calculations. With the Hamiltonian approach, one not only describes the spectra of lattice-QCD eigenstates through the eigenvalues of the finite-volume Hamiltonian matrix, but one also learns the composition of the lattice-QCD eigenstates via the eigenvectors of the Hamiltonian matrix. One learns the composition of the states in terms of the meson-baryon basis states considered in formulating the effective field theory. One also learns the composition of the resonances observed in Nature. In this paper, we will focus on recent breakthroughs in our understanding of the structure of the $N^*(1535)$, $N^*(1440)$ and $Lambda^*(1405)$ resonances using this method.
Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, beyond the Standard Model (BSM) physics requires detailed knowledge of non-perturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the leading order $pi^- to pi^+$ exchange diagrams. Utilizing our result and taking advantage of effective field theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which may then be used as input for nuclear many-body calculations of the relevant experimental decays. Contributions from short-range operators may prove to be equally important to, or even more important than, those from long-range Majorana neutrino exchange.
83 - J. Segovia , C. Chen , Z.-F. Cui 2019
The task of mapping and explaining the spectrum of baryons and the structure of these states in terms of quarks and gluons is a longstanding challenge in hadron physics, which is likely to persist for another decade or more. We review the progress made in this topic using a functional method based on Dyson-Schwinger equations. This framework provides a non-perturbative, Poincare-covariant continuum formulation of Quantum Chromodynamics which is able to extract novel insight on baryon properties since the physics at the hadron level is directly related with the underlying quark-gluon substructure, via convolution of Green functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا