Do you want to publish a course? Click here

LUX-ZEPLIN (LZ) Conceptual Design Report

223   0   0.0 ( 0 )
 Added by Harry Nelson
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.



rate research

Read More

312 - B.J. Mount , S. Hans , R. Rosero 2017
In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements.
The last decade witnessed an increasing interest in axions and axion-like particles with many theoretical works published and many new experimental proposals that started a real race towards their discovery. This paper is the Conceptual Design Report of the KLASH (KLoe magnet for Axion SearcH) experiment at the Laboratori Nazionali di Frascati (LNF). The idea of this experiment has been stimulated by the availability of the large volume superconducting magnet, with a moderate magnetic field of 0.6 T, used in the KLOE detector at the DAFNE collider. The main conclusion we draw from this report is the possibility to build and put in operation at LNF in 2-3 years a large haloscope with the sensitivity to KSVZ axions in the low mass range between 0.2 and 1 $mu$eV, complementary to that of other experiments. Timeline and cost are competitive with respect to other proposals in the same mass region thanks to the availability of most of the infrastructure, in particular the superconducting magnet and the cryogenics plant.
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented.
The LUX-ZEPLIN experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon. Surrounding the liquid xenon cryostat is an outer detector veto system with the primary aim of vetoing neutron single-scatter events in the liquid xenon that could mimic a weakly interacting massive particle (WIMP) dark matter signal. The outer detector consists of approximately 17 tonnes of gadolinium-loaded liquid scintillator confined to 10 acrylic tanks surrounding the cryostat and 228,000 litres of water as the outermost layer. It will be monitored by 120 inward-facing 8-inch photomultiplier tubes. An optical calibration system has been designed and built to calibrate and monitor these photomultiplier tubes allowing the veto system to reach its required efficiency and thus ensuring that LUX-ZEPLIN meets its target sensitivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا