Do you want to publish a course? Click here

The Extreme Ultraviolet Deficit - Jet Connection in the Quasar 1442+101

171   0   0.0 ( 0 )
 Added by Brian Punsly
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In previous studies, it has been shown that the long term time average jet power, $overline{Q}$, is correlated with the spectral index in the extreme ultraviolet (EUV), $alpha_{EUV}$ (defined by $F_{ u} sim u^{-alpha_{EUV}}$ computed between 700AA, and 1100AA,). Larger $overline{Q}$ tends to decrease the EUV emission. This is a curious relationship because it connects a long term average over $sim 10^{6}$ years with an instantaneous measurement of the EUV. The EUV appears to be emitted adjacent to the central supermassive black hole and the most straightforward explanation of the correlation is that the EUV emitting region interacts in real time with the jet launching mechanism. Alternatively stated, the $overline{Q}$ - $alpha_{EUV}$ correlation is a manifestation of a contemporaneous (real time) jet power, $Q(t)$, correlation with $alpha_{EUV}$. In order to explore this possibility, this paper considers the time variability of the strong radio jet of the quasar 1442+101 that is not aberrated by strong Doppler enhancement. This high redshift (z = 3.55) quasar is uniquely suited for this endeavor as the EUV is redshifted into the optical observing window allowing for convenient monitoring. More importantly, it is bright enough to be seen through the Lyman forest and its radio flux is strong enough that it has been monitored frequently. Quasi-simultaneous monitoring (five epochs spanning $sim 40$ years) show that increases in $Q(t)$ correspond to decreases in the EUV as expected.



rate research

Read More

Only a handful of quasars have been identified as kinetically dominated, their long term time averaged jet power, $overline{Q}$, exceeds the bolometric thermal emission, $L_{bol}$, associated with the accretion flow. This letter presents the first extreme ultraviolet (EUV) spectrum of a kinetically dominated quasar, 3C 270.1. The EUV continuum flux density of 3C 270.1 is very steep, $F_{ u} sim u^{-alpha_{EUV}}$, $alpha_{EUV} =2.98pm 0.15$. This value is consistent with the correlation of $overline{Q}/L_{bol}$ and $alpha_{EUV}$ found in previous studies of the EUV continuum of quasars, the EUV deficit of radio loud quasars. Curiously, although ultraviolet broad absorption line (BAL) troughs in quasar spectra are anti-correlated with $overline{Q}$, 3C 270.1 has been considered a BAL quasar based on an SDSS spectrum. This claim is examined in terms of the EUV spectrum of OVI 1and the highest resolution CIV spectrum in the archival data and the SDSS spectrum. First, from [OIII]4959,5007 (IR) observations and the UV spectral lines, it is concluded that the correct redshift for 3C 270.1 is 1.5266. It is then found that the standard measure of broad absorption, BALnicity = 0, for MgII 2800, CIV 1549 and OVI 1032 in all epochs.
We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500 - 920 $AA$) of high luminosity quasars using HST (low to intermediate redshift sample) and SDSS (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is $> 2times 10^{7}$ sec compared to $< 1.5times 10^{7}$ sec. Based on an excess variance analysis, for time intervals $< 2times 10^{7}$ sec in the quasar rest frame, $10%$ of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals $>2times 10^{7}$ sec in the quasar rest frame, $55%$ of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between $2.5times 10^{7}$ sec and $3.16times 10^{7}$ sec (1 yr). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these time scales. A threshold time scale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0 - 7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability time scale.
Detailed studies of relativistic jets in active galactic nuclei (AGN) require high-fidelity imaging at the highest possible resolution. This can be achieved using very long baseline interferometry (VLBI) at radio frequencies, combining worldwide (global) VLBI arrays of radio telescopes with a space-borne antenna on board a satellite. We present multiwavelength images made of the radio emission in the powerful quasar S5 0836+710, obtained using a global VLBI array and the antenna Spektr-R of the RadioAstron mission of the Russian Space Agency, with the goal of studying the internal structure and physics of the relativistic jet in this object. The RadioAstron observations at wavelengths of 18cm, 6cm, and 1.3cm are part of the Key Science Program for imaging radio emission in strong AGN. The internal structure of the jet is studied by analyzing transverse intensity profiles and modeling the structural patterns developing in the flow. The RadioAstron images reveal a wealth of structural detail in the jet of S5 0836+710 on angular scales ranging from 0.02mas to 200mas. Brightness temperatures in excess of $10^{13}$,K are measured in the jet, requiring Doppler factors of $ge 100$ for reconciling them with the inverse Compton limit. Several oscillatory patterns are identified in the ridge line of the jet and can be explained in terms of the Kelvin-Helmholtz (KH) instability. The oscillatory patterns are interpreted as the surface and body wavelengths of the helical mode of the KH instability. The interpretation provides estimates of the jet Mach number and of the ratio of the jet to the ambient density, which are found to be $M_mathrm{j}approx 12$ and $etaapprox 0.33$. The ratio of the jet to the ambient density should be conservatively considered an upper limit because its estimate relies on approximations.
122 - T. An , B.-Q. Lao , W. Zhao 2016
The quasar 3C~286 is one of two compact steep spectrum sources detected by the {it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the $gamma$-ray emission in 3C~286. The Very Long Baseline Interferometry (VLBI) images at various frequencies reveal a one-sided core--jet structure extending to the southwest at a projected distance of $sim$1 kpc. The component at the jet base showing an inverted spectrum is identified as the core, with a mean brightness temperature of $2.8times 10^{9}$~K. The jet bends at about 600 pc (in projection) away from the core, from a position angle of $-135^circ$ to $-115^circ$. Based on the available VLBI data, we inferred the proper motion speed of the inner jet as $0.013 pm 0.011$ mas yr$^{-1}$ ($beta_{rm app} = 0.6 pm 0.5$), corresponding to a jet speed of about $0.5,c$ at an inclination angle of $48^circ$ between the jet and the line of sight of the observer. The brightness temperature, jet speed and Lorentz factor are much lower than those of $gamma$-ray-emitting blazars, implying that the pc-scale jet in 3C~286 is mildly relativistic. Unlike blazars in which $gamma$-ray emission is in general thought to originate from the beamed innermost jet, the location and mechanism of $gamma$-ray emission in 3C~286 may be different as indicated by the current radio data. Multi-band spectrum fitting may offer a complementary diagnostic clue of the $gamma$-ray production mechanism in this source.
We present the first results from the Quasar Feedback Survey, a sample of 42 z<0.2, [O III] luminous AGN (L[O III]>10^42.1 ergs/s) with moderate radio luminosities (i.e. L(1.4GHz)>10^23.4 W/Hz; median L(1.4GHz)=5.9x10^23 W/Hz). Using high spatial resolution (~0.3-1 arcsec), 1.5-6 GHz radio images from the Very Large Array, we find that 67 percent of the sample have spatially extended radio features, on ~1-60 kpc scales. The radio sizes and morphologies suggest that these may be lower radio luminosi
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا