Do you want to publish a course? Click here

Light Stops and Observation of Supersymmetry at LHC RUN-II

116   0   0.0 ( 0 )
 Added by Pran Nath
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Light stops consistent with the Higgs boson mass of $sim126,{rm GeV}$ are investigated within the framework of minimal supergravity. It is shown that models with light stops which are also consistent with the thermal relic density constraints require stop coannihilation with the neutralino LSP. The analysis shows that the residual set of parameter points with light stops satisfying both the Higgs mass and the relic density constraints lie within a series of thin strips in the $m_0-m_{1/2}$ plane for different values of $A_0/m_0$. Consequently, this region of minimal supergravity parameter space makes a number of very precise predictions. It is found that light stops of mass down to 400~GeV or lower can exist consistent with all constraints. A signal analysis for this class of models at LHC RUN-II is carried out and the dominant signals for their detection identified. Also computed is the minimum integrated luminosity for $5sigma$ discovery of the models analyzed. If supersymmetry is realized in this manner, the stop masses can be as low as 400~GeV or lower, and the mass gap between the lightest neutralino and lightest stop will be approximately 30-40~GeV. We have optimized the ATLAS signal regions specifically for stop searches in the parameter space and find that a stop with mass $sim 375,{rm GeV}$ can be discovered with as little as $sim$ 60~fb$^{-1}$ of integrated luminosity at RUN-II of the LHC; the integrated luminosity needed for discovery could be further reduced with more efficient signature analyses. The direct detection of dark matter in this class of models is also discussed. It is found that dark matter cross sections lie close to, but above, coherent neutrino scattering and would require multi-ton detectors such as LZ to see a signal of dark matter for this class of models.



rate research

Read More

We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with $sim 15$ fb$^{-1}$ of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most vanilla version of SUSY (the MSSM with $R$-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ($<100$ TeV). We conclude by considering the prospects for the high-luminosity LHC era, where we expect the current limits on particle masses to improve by up to $sim 1$ TeV, and discuss further model-building directions for natural SUSY that are motivated by this work.
225 - Beranger Dumont 2014
Two major problems call for an extension of the Standard Model (SM): the hierarchy problem in the Higgs sector and the dark matter in the Universe. The discovery of a Higgs boson with mass of about 125 GeV was clearly the most significant piece of news from CERNs Large Hadron Collider (LHC). In addition to representing the ultimate triumph of the SM, it shed new light on the hierarchy problem and opened up new ways of probing new physics. The various measurements performed at Run I of the LHC constrain the Higgs couplings to SM particles as well as invisible and undetected decays. In this thesis, the impact of the LHC Higgs results on various new physics scenarios is assessed, carefully taking into account uncertainties and correlations between them. Generic modifications of the Higgs coupling strengths, possibly arising from extended Higgs sectors or higher-dimensional operators, are considered. Furthermore, specific new physics models are tested. This includes, in particular, the phenomenological Minimal Supersymmetric Standard Model. While a Higgs boson has been found, no sign of beyond the SM physics was observed at Run I of the LHC in spite of the large number of searches performed by the ATLAS and CMS collaborations. The implications of the negative results obtained in these searches constitute another important part of this thesis. First, supersymmetric models with a dark matter candidate are investigated in light of the negative searches for supersymmetry at the LHC using a so-called simplified model approach. Second, tools using simulated events to constrain any new physics scenario from the LHC results are presented. Moreover, during this thesis the selection criteria of several beyond the SM analyses have been reimplemented in the MadAnalysis 5 framework and made available in a public database.
We present a comprehensive study of the electroweak interactions using the available Higgs and electroweak diboson production results from LHC Runs 1 and 2 as well as the electroweak precision data, in terms of the dimension-six operators. Under the assumption that no new tree level sources of flavor violation nor violation of universality of the weak current is introduced, the analysis involves 21 operators. We assess the impact of the data on kinematic distributions for the Higgs production at the LHC by comparing the results obtained including the simplified template cross section data with those in which only total Higgs signal strengths are considered. We also compare the results obtained when including the dimension-six anomalous contributions to order $1/Lambda^2$ and to order $1/Lambda^4$. As an illustration of the LHC potential to indirectly learn about specific forms of new physics, we adapt the analysis to constrain the parameter space for a few simple extensions of the standard model which generate a subset of the dimension-six operators at tree level.
We analyse the phenomenological implications of a light Higgs boson, $h$, within the CP-conserving 2-Higgs Doublet Model (2HDM) Type-I, for the detection prospects of the charged $H^pm$ state at Run II of the Large Hadron Collider (LHC), assuming $sqrt{s}=13$ TeV as energy and ${cal O}(100~{rm fb}^{-1})$ as luminosity. When sufficiently light, this $h$ state can open up the bosonic decay channel $H^pm to W^{pm(*)}h$, which may have a branching ratio significantly exceeding those of the $H^pm to tau u$ and $H^pm to cs$ channels. We perform a broad scan of the 2HDM Type-I parameter space, assuming the heavier of the two CP-even Higgs bosons, $H$, to be the observed SM-like state with a mass near 125 GeV. Through these scans we highlight regions in which $m_{H^pm} < m_t +m_b$ that are still consistent with the most recent limits from experimental searches. We find in these regions that, when the $H^pm to W^{pm(*)}h$ decay mode is the dominant one, the $h$ can be highly fermiophobic, with a considerably large decay rate in the $gammagamma$ channel. This can result in the total cross section of the $sigma(ppto H^pm h to W^{pm(*)} + 4gamma)$ process reaching up to ${cal O}(100~{rm fb})$. We therefore investigate the possibility of observing this spectacular signal at the LHC Run II.
Motivated by the absence of any clear signal of physics beyond the Standard Model at the LHC after Run I, we discuss one possible slight hint of new physics and one non-minimal extension of the Standard Model. In the first part we provide a tentative explanation of a small excess of multilepton events, observed by the CMS collaboration, by means of a simplified model of gauge mediated supersymmetry breaking. In the second part we discuss how the standard phenomenology of gauge mediation can be significantly modified if one makes the non-minimal assumption that supersymmetry is broken in more than one hidden sector. Such multiple hidden sector models involve light neutral fermions called pseudo-goldstini and, due to the extra decay steps they induce, where soft photons are emitted, these models give rise to multiphoton plus missing energy signatures. We discuss why the existing LHC searches are poorly sensitive to these model and we propose new searches designed to probe them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا