Optical properties of silicon rich silicon nitride (SixNyHz) from first principles


Abstract in English

The real and imaginary parts of the complex refractive index of SixNyHz have been calculated using density functional perturbation theory. Optical spectra for reflectivity, adsorption coefficient, energy-loss function (ELF), and refractive index, are obtained. The results for Si3N4 are in agreement with the available theoretical and experimental results. To understand the electron energy loss mechanism in Si rich silicon nitride, the influence of the Si doping rate, of the positions of the dopants, and of H in and on the surface on the ELF have been investigated. It has been found that all defects, such as dangling bonds in the bulk and surfaces, increase the intensity of the ELF in the low energy range (below 10 eV). H in the bulk and on the surface has a healing effect, which can reduce the intensity of the loss peaks by saturating the dangling bonds. Electronic structure analysis has confirmed the origin of the changes in the ELF. It has demonstrated that the changes in ELF is not only affected by the composition but also by the microstructures of the materials. The results can be used to tailor the optical properties, in this case the ELF of Si rich Si3N4, which is essential for secondary electron emission application.

Download