Do you want to publish a course? Click here

Truncated long-range percolation on oriented graphs

310   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.



rate research

Read More

We consider oriented long-range percolation on a graph with vertex set $mathbb{Z}^d times mathbb{Z}_+$ and directed edges of the form $langle (x,t), (x+y,t+1)rangle$, for $x,y$ in $mathbb{Z}^d$ and $t in mathbb{Z}_+$. Any edge of this form is open with probability $p_y$, independently for all edges. Under the assumption that the values $p_y$ do not vanish at infinity, we show that there is percolation even if all edges of length more than $k$ are deleted, for $k$ large enough. We also state the analogous result for a long-range contact process on $mathbb{Z}^d$.
189 - Lung-Chi Chen , Akira Sakai 2010
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-alpha}$ with $alpha>0$. For random walk in any dimension $d$ and for self-avoiding walk and critical/subcritical oriented percolation above the common upper-critical dimension $d_{mathrm{c}}equiv2(alphawedge2)$, we prove large-$t$ asymptotics of the gyration radius, which is the average end-to-end distance of random walk/self-avoiding walk of length $t$ or the average spatial size of an oriented percolation cluster at time $t$. This proves the conjecture for long-range self-avoiding walk in [Ann. Inst. H. Poincar{e} Probab. Statist. (2010), to appear] and for long-range oriented percolation in [Probab. Theory Related Fields 142 (2008) 151--188] and [Probab. Theory Related Fields 145 (2009) 435--458].
We consider directed last-passage percolation on the random graph G = (V,E) where V = Z and each edge (i,j), for i < j, is present in E independently with some probability 0 < p <= 1. To every present edge (i,j) we attach i.i.d. random weights v_{i,j} > 0. We are interested in the behaviour of w_{0,n}, which is the maximum weight of all directed paths from 0 to n, as n tends to infinity. We see two very different types of behaviour, depending on whether E[v_{i,j}^2] is finite or infinite. In the case where E[v_{i,j}^2] is finite we show that the process has a certain regenerative structure, and prove a strong law of large numbers and, under an extra assumption, a functional central limit theorem. In the situation where E[v_{i,j}^2] is infinite we obtain scaling laws and asymptotic distributions expressed in terms of a continuous last-passage percolation model on [0,1]; these are related to corresponding results for two-dimensional last-passage percolation with heavy-tailed weights obtained by Hambly and Martin.
253 - Lung-Chi Chen , Akira Sakai 2008
We prove that the Fourier transform of the properly-scaled normalized two-point function for sufficiently spread-out long-range oriented percolation with index alpha>0 converges to e^{-C|k|^{alphawedge2}} for some Cin(0,infty) above the upper-critical dimension 2(alphawedge2). This answers the open question remained in the previous paper [arXiv:math/0703455]. Moreover, we show that the constant C exhibits crossover at alpha=2, which is a result of interactions among occupied paths. The proof is based on a new method of estimating fractional moments for the spatial variable of the lace-expansion coefficients.
We consider Bernoulli bond percolation on oriented regular trees, where besides the usual short bonds, all bonds of a certain length are added. Independently, short bonds are open with probability $p$ and long bonds are open with probability $q$. We study properties of the critical curve which delimits the set of pairs $(p,q)$ for which there are almost surely no infinite paths. We also show that this curve decreases with respect to the length of the long bonds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا