Do you want to publish a course? Click here

Shear Forces and Heat Conductance in Nanoscale Junctions

74   0   0.0 ( 0 )
 Added by Oleg Kolosov
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanoscale solid-solid contacts define a wealth of material behaviours from the electrical and thermal conductivity in modern electronic devices to friction and losses in micro- and nanoelectromechanical systems. For modern ultra-high integration processor chips, power electronic devices and thermoelectrics one of the most essential, but thus far most challenging, aspects is the assessment of the heat transport at the nanoscale sized interfaces between their components. While this can be effectively addressed by a scanning thermal microscopy, or SThM, which demonstrates the highest spatial resolution to thermal transport to date, SThM quantitative capability is undermined by the poorly defined nature of the nanoscale contact between the probe tip and the sample. Here we show that simultaneous measurements of the shear force and the heat flow in the probe-sample junction shows distinct correlation between thermal conductance and maximal shear force in the junction for multiple probe-material combinations. Quantitative analysis of this correlation confirmed the intrinsic ballistic nature of the heat transport in the tip-surface nanoscale contact suggesting that they are, ultimately, composed of near-atomic sized regions. Furthermore, in analogy to the Wiedemann-Franz law, which links electrical and thermal conductivity in metals, we suggest and experimentally confirm a general relation that links shear strength and thermal conductance in nanoscale contacts via the fundamental material properties of heat capacity and heat carrier group velocity, thus opening new avenues for quantitative exploration of thermal transport on the nanoscale.



rate research

Read More

We study the heat conductance of hybrid superconducting junctions. Our analysis involves single-channel junctions with arbitrary transmission as well as diffusive connectors and shows the influence of the superconducting gaps and phases of the contacts on the heat conductance. If the junction is diffusive, these effects are completely quenched on average, however, we find that their influence persists in weak-localization corrections and conductance fluctuations. While these statistical properties strongly deviate from the well-known analogues for the charge conductance, we demonstrate that the heat conductance fluctuations maintain a close to universal behavior. We find a generalized Wiedemann-Franz law for Josephson junctions with equal gaps and vanishing phase difference.
Fermi arc surface states, the manifestation of the bulk-edge correspondence in Weyl semimetals, have attracted much research interest. In contrast to the conventional Fermi loop, the disconnected Fermi arcs provide an exotic 2D system for exploration of novel physical effects on the surface of Weyl semimetals. Here, we propose that visible conductance oscillation can be achieved in the planar junctions fabricated on the surface of Weyl semimetal with a pair of Fermi arcs. It is shown that Fabry-P{e}rot-type interference inside the 2D junction can generate conductance oscillation with its visibility strongly relying on the shape of the Fermi arcs and their orientation relative to the strip electrodes, the latter clearly revealing the anisotropy of the Fermi arcs. Moreover, we show that the visibility of the oscillating pattern can be significantly enhanced by a magnetic field perpendicular to the surface taking advantage of the bulk-surface connected Weyl orbits. Our work offers an effective way for the identification of Fermi arc surface states through transport measurement and predicts the surface of Weyl semimetal as a novel platform for the implementation of 2D conductance oscillation.
84 - F. G. Eich , M. Di Ventra , 2016
We analyze the short-time behavior of the heat and charge currents through nanoscale conductors exposed to a temperature gradient. To this end, we employ Luttingers thermomechanical potential to simulate a sudden change of temperature at one end of the conductor. We find that the direction of the charge current through an impurity is initially opposite to the direction of the charge current in the steady-state limit. Furthermore, we investigate the transient propagation of energy and particle density driven by a temperature variation through a conducting nanowire. Interestingly, we find that the velocity of the wavefronts of, both, the particle and the energy wave have the same constant value, insensitive to changes in the average electronic density. In the steady-state regime, we find that, at low temperatures, the local temperature and potential, as measured by a floating probe lead, exhibit characteristic oscillations due to quantum interference, with a periodicity that corresponds to half the Fermi wavelength of the electrons.
We calculate the zero-temperature differential conductance $dI/dV$ of a voltage-biased one-dimensional junction between a nontopological and a topological superconductor for arbitrary junction transparency using the scattering matrix formalism. We consider two representative models for the topological superconductors: (i) spinful $p$-wave and (ii) $s$-wave with spin-orbit coupling and spin splitting. We verify that in the tunneling limit (small junction transparencies) where only single Andreev reflections contribute to the current, the conductance for voltages below the nontopological superconductor gap $Delta_s$ is zero and there are two symmetric conductance peaks appearing at $eV = pm Delta_s$ with the quantized value $(4-pi)2e^2/h$ due to resonant Andreev reflection from the Majorana zero mode. However, when the junction transparency is not small, there is a finite conductance for $e|V| < Delta_s$ arising from multiple Andreev reflections. The conductance at $eV = pm Delta_s$ in this case is no longer quantized. In general, the conductance is particle-hole asymmetric except for sufficiently small transparencies. We further show that, for certain values of parameters, the tunneling conductance from a zero-energy conventional Andreev bound state can be made to mimic the conductance from a true Majorana mode.
We present a comprehensive study of the properties of the off-resonant conductance spectrum in oligomer nanojunctions between graphitic electrodes. By employing first-principle-based methods and the Landauer approach of quantum transport, we identify how the electronic structure of the molecular junction components is reflected in electron transport across such systems. For virtually all energies within the conduction gap of the corresponding idealised polymer chain, we show that: a) the inverse decay length of the tunnelling conductance is intrinsically defined by the complex-band structure of the molecular wire despite ultrashort oligomer lengths of few monomer units, and b) the contact conductance crucially depends on both the local density of states on the metal side and the realised interfacial contact.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا