Do you want to publish a course? Click here

A study of the measurement precision of the Higgs boson decaying into tau pairs at the ILC

109   0   0.0 ( 0 )
 Added by Shin-ichi Kawada
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We evaluate the measurement precision of the production cross section times the branching ratio of the Higgs boson decaying into tau lepton pairs at the International Linear Collider (ILC). We analyze various final states associated with the main production mechanisms of the Higgs boson, the Higgs-strahlung and WW-fusion processes. The statistical precision of the production cross section times the branching ratio is estimated to be 2.6% and 6.9% for the Higgs-strahlung andWW-fusion processes, respectively, with the nominal integrated luminosities assumed in the ILC Technical Design Report; the precision improves to 1.0% and 3.4% with the running scenario including possible luminosity upgrades. The study provides a reference performance of the ILC for future phenomenological analyses.



rate research

Read More

Talk given at PIC2013 summarizing the results of CMS-PAS-HIG-13-004.
We study the prospects of measuring the decay of the Higgs boson into a pair of muons at the International Linear Collider (ILC). The study is performed at center-of-mass energies of 250,GeV and 500,GeV, with fully-simulated Monte-Carlo samples based on the International Large Detector (ILD). The expected precision on cross section times branching ratio $sigma times mathrm{BR}(h to mu ^+ mu ^-)$ has been evaluated to be 24.9{%} for an integrated luminosity of 2,ab$^{-1}$ at 250,GeV. This result improves to 17.5{%} in combination with 4,ab$^{-1}$ of 500,GeV data. We also quantify the impact of the transverse momentum resolution on this analysis, and found that it is very important reach the design goal of an asymptotic resolution of $sigma_{1/P_t} = 2 times 10^{-5}$,GeV$^{-1}$.
We evaluate the expected measurement accuracy of the branching ratio of the Standard Model Higgs boson decaying into tau lepton pairs $h to tau ^+ tau ^-$ at the ILC with a center-of-mass energy of $sqrt{s} = 500$ GeV with a full simulation of the ILD detector. We assume a Higgs mass of $M_h = 125$ GeV, a branching ratio of $mathrm{BR}(h to tau ^+ tau ^-) = 6.32 %$, beam polarizations of $P(e^+, e^-) = (-0.8,+0.3)$, and an integrated luminosity of $int L dt = 500 mathrm{fb^{-1}}$. The Higgs-strahlung process $e^+ e^- to Zh$ with $Z to q overline{q}$ and the $WW$-fusion process $e^+ e^- to u overline{ u} h$ are expected to be the most sensitive channels at $sqrt{s} = 500$ GeV. Using a multivariate analysis technique, we estimate the expected relative measurement accuracy of the branching ratio $Delta(sigma cdot mathrm{BR}) / (sigma cdot mathrm{BR})$ to be 4.7% and 7.4% for the $q overline{q} h$ and $ u overline{ u} h$ final states, respectively. The results are cross-checked using a cut-based analysis.
The prospects for measuring the branching fraction of $H to mu ^+ mu ^-$ at the International Linear Collider (ILC) have been evaluated based on a full detector simulation of the International Large Detector (ILD) concept, considering centre-of-mass energies ($sqrt{s}$) of 250 GeV and 500 GeV. For both $sqrt{s}$ cases, the two final states $e^+ e^- to qoverline{q}H$ and $e^+ e^- to u overline{ u}H$ have been analyzed. For integrated luminosities of 2 ab$^{-1}$ at $sqrt{s} = 250$ GeV and 4 ab$^{-1}$ at $sqrt{s} = 500$ GeV, the combined precision on the branching fraction of $H to mu ^+ mu ^-$ is estimated to be 17{%}. The impact of the transverse momentum resolution for this analysis is also studied.
75 - D. Jeans , G. W. Wilson 2018
In the Standard Model, the Higgs boson is a CP even state with CP conserving couplings; any deviations from this would be a sign of new physics. These CP properties can be probed by measuring Higgs decays to tau lepton pairs: the transverse correlation between the tau spins depends on CP. This paper develops such an analysis, using full simulation of signal and background events in the International Large Detector concept for the International Linear Collider. We consider Higgs-strahlung events e+ e- -> Z H) in which the Z boson decays to electrons, muons, or hadrons, and the Higgs boson decays to $tau$ leptons, which then decay either to (pi+ nu) or (pi+ pi0 nu). Assuming 2 ab^{-1} of integrated luminosity at a center-of-mass energy of 250~GeV, the mixing angle psi_CP between even and odd CP components of the tau pair from Higgs boson decays can be measured to a precision of 75~mrad (4.3 deg).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا