Do you want to publish a course? Click here

Radio Observations of the Pulsar Wind Nebula HESS J1303-631 Field of View with ATCA

85   0   0.0 ( 0 )
 Added by Iurii Sushch
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on its energy-dependent morphology the initially unidentified very high energy (VHE; E>100 GeV) gamma-ray source HESS J1303-631 was recently associated with the pulsar PSR J1301-6305. Subsequent detection of X-ray and GeV counterparts also supports the identification of the H.E.S.S. source as evolved pulsar wind nebula (PWN). We report here on recent radio observations of the PSR J1301-6305 field of view (FOV) with ATCA dedicated to search for the radio counterpart of this evolved PWN. Observations at 5.5 GHz and 7.5 GHz do not reveal any extended emission associated with the pulsar. The analysis of the archival 1.384 GHz and 2.368 GHz data also does not show any significant emission. The 1.384 GHz data reveal a hint of an extended shell-like emission in the PSR J1301-6305 FOV which might be a supernova remnant. We discuss the implications of the non-detection at radio wavelengths on the nature and evolution of the PWN as well as the possibility of the SNR candidate being the birth place of PSR J1301-6305.



rate research

Read More

Radio observations of the region surrounding PSR J1301-6305 at 5.5 GHz and 7.5 GHz were conducted with ATCA on September 5th, 2013. They were dedicated to the search of the radio counterpart of the evolved pulsar wind nebula HESS J1303-631, detected in X-rays and GeV-TeV gamma-rays. The collected data do not reveal any significant extended emission associated with PSR J1301-6305. In addition, archival 1.384 GHz and 2.368 GHz data do not show any evidence for a radio counterpart of HESS J1303-631. Archival 1.384 GHz observations reveal a detection of an extended structure centred at an angular distance of 190 from the pulsar. This extended structure might be a Supernova remnant (SNR) and a potential birth place of PSR J1301-6305. The implications of the lack of radio counterpart of HESS J1303-631 on the understanding of the nature of the PWN are discussed.
The previously unidentified very high-energy (VHE; E > 100 GeV) gamma-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Detailed morphological and spectral studies of VHE gamma-ray emission as well as of the XMM-Newton X-ray data are performed. Significant energy-dependent morphology of the gamma-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E <2 TeV) extending sim 0.4^{circ} to the South-East of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N_{0} = (5.6 pm 0.5) X 10^{-12} TeV^-1 cm^-2 s^-1, Gamma = 1.5 pm 0.2) and E_{rm cut} = (7.7 pm 2.2) TeV. The PWN is also detected in X-rays, extending sim 2-3 from the pulsar position towards the center of the gamma-ray emission region. The spectral energy distribution (SED) is well described by a one zone leptonic scenario which, with its associated caveats, predicts a very low average magnetic field for this source. Significant energy-dependent morphology of this source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the pulsar PSR J1303-6305. However, the large discrepancy in emission region sizes and the low level of synchrotron radiation suggest a multi-population leptonic nature. The low implied magnetic field suggests that the PWN has undergone significant expansion. This would explain the low level of synchrotron radiation and the difficulty in detecting counterparts at lower energies, the reason this source was originally classified as a dark VHE gamma-ray source.
We present a new and deep analysis of the pulsar wind nebula (PWN) HESS,J1825--137 with a comprehensive data set of almost 400 hours taken with the H.E.S.S. array between 2004 and 2016. The large amount of data, and the inclusion of low-threshold H.E.S.S. II data allows us to include a wide energy range of more than 2.5 orders of magnitude, ranging from 150 GeV up to 70 TeV. We exploit this rich data set to study the morphology and the spectral distributions of various subregions of this largely extended source in more detail. We find that HESS,J1825--137 is not only the brightest source in that region above 32 TeV, but is also one of the most luminous of all firmly identified pulsar wind nebulae in the Milky Way.
130 - Aya Bamba 2009
The results from a systematic study of eleven pulsar wind nebulae with a torus structure observed with the Chandra X-ray observatory are presented. A significant observational correlation is found between the radius of the tori, r, and the spin-down luminosity of the pulsars, Edot. A logarithmic linear fit between the two parameters yields log r = (0.57 +- 0.22) log Edot -22.3 +- 8.0 with a correlation coefficient of 0.82, where the units of r and Edot are pc and ergs s^-1, respectively. The value obtained for the Edot dependency of r is consistent with a square root law, which is theoretically expected. This is the first observational evidence of this dependency, and provides a useful tool to estimate the spin-down energies of pulsars without direct detections of pulsation. Applications of this dependency to some other samples are also shown.
The pulsar wind nebula (PWN) HESS~J1825-137, known to exhibit strong energy dependent morphology, was discovered by HESS in 2005. Powered by the pulsar PSR~B1823-13, the TeV gamma-ray emitting nebula is significantly offset from the pulsar. The asymmetric shape and 21~kyr characteristic age of the pulsar suggest that HESS~J1825-137 is in an evolved state, having possibly already undergone reverse shock interactions from the progenitor supernova. Given its large angular extent, despite its 4~kpc distance, it may have the largest intrinsic size of any TeV PWN so far detected. A rich dataset is currently available with H.E.S.S., including H.E.S.S. II data with a low energy threshold, enabling detailed studies of the source properties and environment. We present new views of the changing nature of the PWN with energy, including maps of the region and spectral studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا