No Arabic abstract
We propose to create superposition states of over 100 Strontium atoms being in a ground state or metastable optical clock state, using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components of the superposition can differ by of order 300 eV in energy, allowing tests of energy decoherence models with greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular formation and diminishing Rydberg level separation for increasing principal number.
We analyze spin squeezing via Rydberg dressing in optical lattice clocks with random fractional filling. We compare the achievable clock stability in different lattice geometries, including unity-filled tweezer clock arrays and fractionally filled lattice clocks with varying dimensionality. We provide practical considerations and useful tools in the form of approximate analytical expressions and fitting functions to aid in the experimental implementation of Rydberg-dressed spin squeezing. We demonstrate that spin squeezing via Rydberg dressing in one-, two-, and three-dimensional optical lattices can provide significant improvements in stability in the presence of random fractional filling.
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay and strong Rydberg-Rydberg atom interactions leads to the emergence of sizeable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.
We study electromagnetically induced transparency (EIT) in the 5s$rightarrow$5p$rightarrow$46s ladder system of a cold $^{87}$Rb gas. We show that the resonant microwave coupling between the 46s and 45p states leads to an Autler-Townes splitting of the EIT resonance. This splitting can be employed to vary the group index by $pm 10^5$ allowing independent control of the propagation of dark state polaritons. We also demonstrate that microwave dressing leads to enhanced interaction effects. In particular, we present evidence for a $1/R^3$ energy shift between Rydberg states resonantly coupled by the microwave field and the ensuing breakdown of the pair-wise interaction approximation.
We devise a cold-atom approach to realizing a broad range of bi-linear quantum magnets. Our scheme is based on off-resonant single-photon excitation of Rydberg $P$-states (Rydberg-dressing), whose strong interactions are shown to yield controllable XYZ-interactions between effective spins, represented by different atomic ground states. The distinctive features of Forster-resonant Rydberg atom interactions are exploited to enhance the effectiveness of Rydberg-dressing and, thereby, yield large spin-interactions that greatly exceed corresponding decoherence rates. We illustrate the concept on a spin-1 chain implemented with cold Rubidium atoms, and demonstrate that this permits the dynamical preparation of topological magnetic phases. Generally, the described approach provides a viable route to exploring quantum magnetism with dynamically tuneable (an)isotropic interactions as well as variable space- and spin-dimensions in cold-atom experiments.
We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based on coherent spin control. The wavepacket of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale. A gravity induced dynamical phase (accrued solely on the spin state, and measured through a Ramsey scheme) is used to reveal the above spatially delocalised superposition of the spin-nano-object composite system that arises during our scheme. We find a remarkable immunity to the motional noise in the c.m. (initially in a thermal state with moderate cooling), and also a dynamical decoupling nature of the scheme itself. Together they secure a high visibility of the resulting Ramsey fringes. The mass independence of our scheme makes it viable for a nano-object selected from an ensemble with a high mass variability. Given these advantages, a quantum superposition with $100$ nm spatial separation for a massive object of $10^9$ amu is achievable experimentally, providing a route to test postulated modifications of quantum theory such as continuous spontaneous localisation.