No Arabic abstract
We use the GALFORM semi-analytical model to study high density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emission-line galaxies (Ly{alpha} and H{alpha} emitters) are used to probe the environments at high redshifts. Radio galaxies are predicted to be hosted by more massive haloes than quasars, and this is imprinted on the amplitude of galaxy overdensities and cross-correlation functions. We find that Ly{alpha} radiative transfer and AGN feedback indirectly affect the clustering on small scales and also the stellar masses, star- formation rates and gas metallicities of galaxies in dense environments. We also investigate the relation between protoclusters associated with radio galaxies and quasars, and their present- day cluster descendants. The progenitors of massive clusters associated with radio galaxies and quasars allow us to determine an average protocluster size in a simple way. Overdensities within the protoclusters are found to correlate with the halo descendant masses. We present scaling relations that can be applied to observational data. By computing projection effects due to the wavelength resolution of modern spectrographs and narrow-band filters we show that the former have enough spectral resolution to map the structure of protoclusters, whereas the latter can be used to measure the clustering around radio galaxies and quasars over larger scales to determine the mass of dark matter haloes hosting them.
The early stage of massive galaxy evolution often involves outflows driven by a starburst or a central quasar plus cold mode accretion (infall), which adds to the mass build-up in the galaxies. To study the nature of these infall and outflows in the quasar environments, we have examined the correlation of narrow absorption lines (NALs) at positive and negative velocity shifts to other quasar properties, such as their broad absorption-line (BAL) outflows and radio-loudness, using spectral data from SDSS-BOSS DR12. Our results show that the incidence of associated absorption lines (AALs) and outflow AALs is strongly correlated with BALs, which indicates most AALs form in quasar-driven outflows. Multiple AALs are also strongly correlated with BALs, demonstrating quasar outflows tend to be highly structured and can create multiple gas components with different velocity shifts along our line of sight. Infall AALs appear less often in quasars with BALs than quasars without BALs. This suggests that BAL outflows act on large scale in host galaxies and inhibit the infall of gas from the IGM, supporting theoretical models in which quasar outflow plays an important role in the feedback to host galaxies. Despite having larger distances, infall AALs are more highly ionized than outflow AALs, which can be attributed to the lower densities in the infall absorbers.
[Abridged] We present the results of a large program conducted with the Very Large Telescope and Keck telescope to search for forming clusters of galaxies near powerful radio galaxies at 2.0 < z < 5.2. We obtained narrow- and broad-band images of nine radio galaxies and their surroundings. The imaging was used to select candidate Lyman alpha emitting galaxies in ~3x3 Mpc^2 areas near the radio galaxies. A total of 337 candidate emitters were found with a rest-frame Lyman alpha equivalent width of EW_0 > 15 A and Sigma = EW_0/Delta EW_0 > 3. Follow-up spectroscopy confirmed 168 Lyman alpha emitters near eight radio galaxies. The success rate of our selection procedure is 91%. At least six of our eight fields are overdense in Lyman alpha emitters by a factor 3-5. Also, the emitters show significant clustering in velocity space. In the overdense fields, the width of the velocity distributions of the emitters is a factor 2-5 smaller than the width of the narrow-band filters. Taken together, we conclude that we have discovered six forming clusters of galaxies (protoclusters). We estimate that roughly 75% of powerful (L_2.7GHz > 10^33 erg/s/Hz/sr) high redshift radio galaxies reside in a protocluster, with a sizes of at least 1.75 Mpc. We estimate that the protoclusters have masses in the range 2-9 x 10^14 Msun and they are likely to be progenitors of present-day (massive) clusters of galaxies. For the first time, we have been able to estimate the velocity dispersion of cluster progenitors from z~5 to ~2. The velocity dispersion of the emitters increases with cosmic time, in agreement with the dark matter velocity dispersion in numerical simulations of forming massive clusters.
Observations of $z gtrsim 6$ quasars provide information on the early phases of the most massive black holes (MBHs) and galaxies. Current observations at sub-mm wavelengths trace cold and warm gas, and future observations will extend information to other gas phases and the stellar properties. The goal of this study is to examine the gas life cycle in a $z gtrsim 6$ quasar: from accretion from the halo to the galaxy and all the way into the MBH, to how star formation and the MBH itself affect the gas properties. Using a very-high resolution cosmological zoom-in simulation of a $z=7$ quasar including state-of-the-art non-equilibrium chemistry, MBH formation, growth and feedback, we investigate the distribution of the different gas phases in the interstellar medium across cosmic time. We assess the morphological evolution of the quasar host using different tracers (star- or gas-based) and the thermodynamic distribution of the MBH accretion-driven outflows, finding that obscuration in the disc is mainly due to molecular gas, with the atomic component contributing at larger scales and/or above/below the disc plane. Moreover, our results also show that molecular outflows, if present, are more likely the result of gas being lifted near the MBH than production within the wind because of thermal instabilities. Finally, we also discuss how different gas phases can be employed to dynamically constrain the MBH mass, and argue that resolutions below $sim 100$ pc yield unreliable estimates because of the strong contribution of the nuclear stellar component to the potential at larger scales.
Ultra Steep Spectrum (USS) radio sources are one of the efficient tracers of High Redshift Radio Galaxies (HzRGs). To search for HzRGs candidates, we investigate properties of a large sample of faint USS sources derived from our deep 325 MHz GMRT observations combined with 1.4 GHz VLA data on the two subfields (i.e., VLA-VIMOS VLT Deep Survey (VVDS) and Subaru X-ray Deep Field (SXDF)) in the XMM-LSS field. The available redshift estimates show that majority of our USS sample sources are at higher redshifts with the median redshifts ~ 1.18 and ~ 1.57 in the VLA-VVDS and SXDF fields. In the VLA-VVDS field, ~ 20% of USS sources lack the redshift estimates as well as the detection in the deep optical, IR surveys, and thus these sources may be considered as potential high-z candidates. The radio luminosity distributions suggest that a substantial fraction (~ 40%) of our USS sample sources are radio-loud sources, distributed over redshifts ~ 0.5 to 4.
Observations of high-redshift quasars provide information on the massive black holes (MBHs) powering them and the galaxies hosting them. Current observations of $z gtrsim 6$ hosts, at sub-mm wavelengths, trace the properties of cold gas, and these are used to compare with the correlations between MBHs and galaxies characterising the $z=0$ population. The relations at $z=0$, however, rely on stellar-based tracers of the galaxy properties. We perform a very-high resolution cosmological zoom-in simulation of a $z=7$ quasar including state-of-the-art non-equilibrium chemistry, MBH formation, growth and feedback, to assess the evolution of the galaxy host and the central MBH, and compare the results with recent ALMA observations of high-redshift quasars. We measure both the stellar-based quantities used to establish the $z=0$ correlations, as well as the gas-based quantities available in $z gtrsim 6$ observations, adopting the same assumptions and techniques used in observational studies. The high-redshift studies argued that MBHs at high redshift deviate from the local MBH-galaxy correlations. In our analysis of the single galaxy we evolve, we find that the high-redshift population sits on the same correlations as the local one, when using the same tracers used at $z=0$. When using the gas-based tracers, however, MBHs appear to be over-massive. The discrepancy between local and high-redshift MBHs seems caused by the different tracers employed, and necessary assumptions, and not by an intrinsic difference. Better calibration of the tracers, higher resolution data and availability of facilities that can probe the stellar population will be crucial to assess precisely and accurately high-redshift quasar hosts.