Do you want to publish a course? Click here

The dynamics of simple gene-network motifs subject to extrinsic fluctuations

123   0   0.0 ( 0 )
 Added by Michael Assaf
 Publication date 2015
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Cellular processes do not follow deterministic rules; even in identical environments genetically identical cells can make random choices leading to different phenotypes. This randomness originates from fluctuations present in the biomolecular interaction networks. Most previous work has been focused on the intrinsic noise (IN) of these networks. Yet, especially for high-copy-number biomolecules, extrinsic or environmental noise (EN) has been experimentally shown to dominate the variation. Here, we develop an analytical formalism that allows for calculation of the effect of EN on gene-expression motifs. We introduce a method for modeling bounded EN as an auxiliary species in the master equation. The method is fully generic and is not limited to systems with small EN magnitudes. We focus our study on motifs that can be viewed as the building blocks of genetic switches: a nonregulated gene, a self-inhibiting gene, and a self-promoting gene. The role of the EN properties (magnitude, correlation time, and distribution) on the statistics of interest are systematically investigated, and the effect of fluctuations in different reaction rates is compared. Due to its analytical nature, our formalism can be used to quantify the effect of EN on the dynamics of biochemical networks and can also be used to improve the interpretation of data from single-cell gene-expression experiments.



rate research

Read More

Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
According to the `ceRNA hypothesis, microRNAs (miRNAs) may act as mediators of an effective positive interaction between long coding or non-coding RNA molecules, carrying significant potential implications for a variety of biological processes. Here, inspired by recent work providing a quantitative description of small regulatory elements as information-conveying channels, we characterize the effectiveness of miRNA-mediated regulation in terms of the optimal information flow achievable between modulator (transcription factors) and target nodes (long RNAs). Our findings show that, while a sufficiently large degree of target derepression is needed to activate miRNA-mediated transmission, (a) in case of differential mechanisms of complex processing and/or transcriptional capabilities, regulation by a post-transcriptional miRNA-channel can outperform that achieved through direct transcriptional control; moreover, (b) in the presence of large populations of weakly interacting miRNA molecules the extra noise coming from titration disappears, allowing the miRNA-channel to process information as effectively as the direct channel. These observations establish the limits of miRNA-mediated post-transcriptional cross-talk and suggest that, besides providing a degree of noise buffering, this type of control may be effectively employed in cells both as a failsafe mechanism and as a preferential fine tuner of gene expression, pointing to the specific situations in which each of these functionalities is maximized.
Zero-order ultrasensitivity (ZOU) is a long known and interesting phenomenon in enzyme networks. Here, a substrate is reversibly modified by two antagonistic enzymes (a push-pull system) and the fraction in modified state undergoes a sharp switching from near-zero to near-unity at a critical value of the ratio of the enzyme concentrations, under saturation conditions. ZOU and its extensions have been studied for several decades now, ever since the seminal paper of Goldbeter and Koshland (1981); however, a complete probabilistic treatment, important for the study of fluctuations in finite populations, is still lacking. In this paper, we study ZOU using a modular approach, akin to the total quasi-steady state approximation (tQSSA). This approach leads to a set of Fokker-Planck (drift-diffusion) equations for the probability distributions of the intermediate enzyme-bound complexes, as well as the modified/unmodified fractions of substrate molecules. We obtain explicit expressions for various average fractions and their fluctuations in the linear noise approximation (LNA). The emergence of a critical point for the switching transition is rigorously established. New analytical results are derived for the average and variance of the fractional substrate concentration in various chemical states in the near-critical regime. For the total fraction in the modified state, the variance is shown to be a maximum near the critical point and decays algebraically away from it, similar to a second-order phase transition. The new analytical results are compared with existing ones as well as detailed numerical simulations using a Gillespie algorithm.
To estimate the time, many organisms, ranging from cyanobacteria to animals, employ a circadian clock which is based on a limit-cycle oscillator that can tick autonomously with a nearly 24h period. Yet, a limit-cycle oscillator is not essential for knowing the time, as exemplified by bacteria that possess an hourglass: a system that when forced by an oscillatory light input exhibits robust oscillations from which the organism can infer the time, but that in the absence of driving relaxes to a stable fixed point. Here, using models of the Kai system of cyanobacteria, we compare a limit- cycle oscillator with two hourglass models, one that without driving relaxes exponentially and one that does so in an oscillatory fashion. In the limit of low input-noise, all three systems are equally informative on time, yet in the regime of high input-noise the limit-cycle oscillator is far superior. The same behavior is found in the Stuart-Landau model, indicating that our result is universal.
Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from single-cell sequencing or flow-cytometry experiments into regulatory dynamics. We show how static population snapshots of co-variability can be exploited to rigorously infer properties of gene expression dynamics when gene expression reporters probe their upstream dynamics on separate time-scales. This can be experimentally exploited in dual-reporter experiments with fluorescent proteins of unequal maturation times, thus turning an experimental bug into an analysis feature. We derive correlation conditions that detect the presence of closed-loop feedback regulation in gene regulatory networks. Furthermore, we show how genes with cell-cycle dependent transcription rates can be identified from the variability of co-regulated fluorescent proteins. Similar correlation constraints might prove useful in other areas of science in which static correlation snapshots are used to infer causal connections between dynamically interacting components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا