Do you want to publish a course? Click here

Resonance Production and $pipi$ S-wave in $pi^- + p rightarrow pi^- pi^- pi^+ + p_{recoil}$ at 190 GeV/c

76   0   0.0 ( 0 )
 Added by Gerhard Mallot
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The COMPASS collaboration has collected the currently largest data set on diffractively produced $pi^-pi^-pi^+$ final states using a negative pion beam of 190 GeV/c momentum impinging on a stationary proton target. This data set allows for a systematic partial-wave analysis in 100 bins of three-pion mass, $0.5 < m_{3pi} < 2.5$ GeV/c$^2$ , and in 11 bins of the reduced four-momentum transfer squared, $0.1 < t < 1.0$ (GeV/c)$^2$ . This two-dimensional analysis offers sensitivity to genuine one-step resonance production, i.e. the production of a state followed by its decay, as well as to more complex dynamical effects in nonresonant $3pi$ production. In this paper, we present detailed studies on selected $3pi$ partial waves with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{-+}$, $2^{++}$, and $4^{++}$. In these waves, we observe the well-known ground-state mesons as well as a new narrow axial-vector meson $a_1(1420)$ decaying into $f_0(980) pi$. In addition, we present the results of a novel method to extract the amplitude of the $pi^-pi^+$ subsystem with $I^{G}J^{PC} = 0^+ 0^{++}$ in various partial waves from the $pi^-pi^-pi^+$ data. Evidence is found for correlation of the $f_0(980)$ and $f_0(1500)$ appearing as intermediate $pi^- pi^+$ isobars in the decay of the known $pi(1800)$ and $pi_2(1880)$.



rate research

Read More

We have performed the most comprehensive resonance-model fit of $pi^-pi^-pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $pi^- + p to pi^-pi^-pi^+ + p_text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $pi(1800)$, $a_1(1260)$, $a_2(1320)$, $pi_2(1670)$, $pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t$ bins. We extract the relative branching fractions of the $rho(770) pi$ and $f_2(1270) pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t$ dependence of the intensity of the resonances and of their phases. The $t$ dependence of the intensities of most resonances differs distinctly from the $t$ dependence of the nonresonant components. For the first time, we determine the $t$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.
A partial wave analysis of antiproton-proton annihilation data in flight at 900 $MeV/c$ into $pi^0 pi^0 eta$ , $pi^0 eta eta$ and $K^+ K^- pi^0$ is presented. The data were taken at LEAR by the Crystal Barrel experiment in 1996. The three channels have been coupled together with $pipi$-scattering isospin I=0 S- and D-wave as well as I=1 P-wave data utilizing the K-matrix approach. Analyticity is treated using Chew-Mandelstam functions. In the fit all ingredients of the K-matrix, including resonance masses and widths, were treated as free parameters. In spite of the large number of parameters, the fit results are in the ballpark of the values published by the Particle Data Group. In the channel $pi^0 pi^0 eta$ a significant contribution of the spin exotic $I^G=1^-$ $J^{PC}=1^{-+}$ $pi_1$-wave with a coupling to $pi^0 eta$ is observed. Furthermore the contributions of $phi(1020) pi^0$ and $K^*(892)^pm K^mp$ in the channel $K^+ K^- pi^0$ have been studied in detail. The differential production cross section for the two reactions and the spin-density-matrix elements for the $phi(1020)$ and $K^*(892)^pm$ have been extracted. No spin-alignment is observed for both vector mesons. The spin density matrix elements have been also determined for the spin exotic wave.
The ratios of the branching fractions of the decays $Lambda_{c}^{+} rightarrow p pi^{-} pi^{+}$, $Lambda_{c}^{+} rightarrow p K^{-} K^{+}$, and $Lambda_{c}^{+} rightarrow p pi^{-} K^{+}$ with respect to the Cabibbo-favoured $Lambda_{c}^{+} rightarrow p K^{-} pi^{+}$ decay are measured using proton-proton collision data collected with the LHCb experiment at a 7 TeV centre-of-mass energy and corresponding to an integrated luminosity of 1.0 fb$^{-1}$: begin{align*} frac{mathcal{B}(Lambda_{c}^{+} rightarrow p pi^{-} pi^{+})}{mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} pi^{+})} & = (7.44 pm 0.08 pm 0.18),%, frac{mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} K^{+})}{mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} pi^{+})} &= (1.70 pm 0.03 pm 0.03),%, frac{mathcal{B}(Lambda_{c}^{+} rightarrow p pi^{-} K^{+})}{mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} pi^{+})} & = (0.165 pm 0.015 pm 0.005 ),%, end{align*} where the uncertainties are statistical and systematic, respectively. These results are the most precise measurements of these quantities to date. When multiplied by the world-average value for $mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} pi^{+})$, the corresponding branching fractions are begin{align*} mathcal{B}(Lambda_{c}^{+} rightarrow p pi^{-} pi^{+}) &= (4.72 pm 0.05 pm 0.11 pm 0.25) times 10^{-3}, mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} K^{+}) &= (1.08 pm 0.02 pm 0.02 pm 0.06) times 10^{-3}, mathcal{B}(Lambda_{c}^{+} rightarrow p pi^{-} K^{+}) &= (1.04 pm 0.09 pm 0.03 pm 0.05) times 10^{-4}, end{align*} where the final uncertainty is due to $mathcal{B}(Lambda_{c}^{+} rightarrow p K^{-} pi^{+})$.
This paper presents several measurements of total production cross sections and total inelastic cross sections for the following reactions: $pi^{+}$+C, $pi^{+}$+Al, $K^{+}$+C, $K^{+}$+Al at 60 GeV/c, $pi^{+}$+C and $pi^{+}$+Al at 31 GeV/c . The measurements were made using the NA61/SHINE spectrometer at the CERN SPS. Comparisons with previous measurements are given and good agreement is seen. These interaction cross sections measurements are a key ingredient for neutrino flux prediction from the reinteractions of secondary hadrons in current and future accelerator-based long-baseline neutrino experiments.
Precise knowledge of hadron production rates in the generation of neutrino beams is necessary for accelerator-based neutrino experiments to achieve their physics goals. NA61/SHINE, a large-acceptance hadron spectrometer, has recorded hadron+nucleus interactions relevant to ongoing and future long-baseline neutrino experiments at Fermi National Accelerator Laboratory. This paper presents three analyses of interactions of 60 GeV/$c$ $pi^+$ with thin, fixed carbon and beryllium targets. Integrated production and inelastic cross sections were measured for both of these reactions. In an analysis of strange, neutral hadron production, differential production multiplicities of $K^0_{S}$, $Lambda$ and anti-$Lambda$ were measured. Lastly, in an analysis of charged hadron production, differential production multiplicities of $pi^+$, $pi^-$, $K^+$, $K^-$ and protons were measured. These measurements will enable long-baseline neutrino experiments to better constrain predictions of their neutrino flux in order to achieve better precision on their neutrino cross section and oscillation measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا