Do you want to publish a course? Click here

In-Network View Synthesis for Interactive Multiview Video Systems

171   0   0.0 ( 0 )
 Added by Laura Toni
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

To enable Interactive multiview video systems with a minimum view-switching delay, multiple camera views are sent to the users, which are used as reference images to synthesize additional virtual views via depth-image-based rendering. In practice, bandwidth constraints may however restrict the number of reference views sent to clients per time unit, which may in turn limit the quality of the synthesized viewpoints. We argue that the reference view selection should ideally be performed close to the users, and we study the problem of in-network reference view synthesis such that the navigation quality is maximized at the clients. We consider a distributed cloud network architecture where data stored in a main cloud is delivered to end users with the help of cloudlets, i.e., resource-rich proxies close to the users. In order to satisfy last-hop bandwidth constraints from the cloudlet to the users, a cloudlet re-samples viewpoints of the 3D scene into a discrete set of views (combination of received camera views and virtual views synthesized) to be used as reference for the synthesis of additional virtual views at the client. This in-network synthesis leads to better viewpoint sampling given a bandwidth constraint compared to simple selection of camera views, but it may however carry a distortion penalty in the cloudlet-synthesized reference views. We therefore cast a new reference view selection problem where the best subset of views is defined as the one minimizing the distortion over a view navigation window defined by the user under some transmission bandwidth constraints. We show that the view selection problem is NP-hard, and propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem. Simulation results finally confirm the performance gain offered by virtual view synthesis in the network.



rate research

Read More

We consider an interactive multiview video streaming (IMVS) system where clients select their preferred viewpoint in a given navigation window. To provide high quality IMVS, many high quality views should be transmitted to the clients. However, this is not always possible due to the limited and heterogeneous capabilities of the clients. In this paper, we propose a novel adaptive IMVS solution based on a layered multiview representation where camera views are organized into layered subsets to match the different clients constraints. We formulate an optimization problem for the joint selection of the views subsets and their encoding rates. Then, we propose an optimal and a reduced computational complexity greedy algorithms, both based on dynamic-programming. Simulation results show the good performance of our novel algorithms compared to a baseline algorithm, proving that an effective IMVS adaptive solution should consider the scene content and the client capabilities and their preferences in navigation.
Interactive multi-view video streaming (IMVS) services permit to remotely immerse within a 3D scene. This is possible by transmitting a set of reference camera views (anchor views), which are used by the clients to freely navigate in the scene and possibly synthesize additional viewpoints of interest. From a networking perspective, the big challenge in IMVS systems is to deliver to each client the best set of anchor views that maximizes the navigation quality, minimizes the view-switching delay and yet satisfies the network constraints. Integrating adaptive streaming solutions in free-viewpoint systems offers a promising solution to deploy IMVS in large and heterogeneous scenarios, as long as the multi-view video representations on the server are properly selected. We therefore propose to optimize the multi-view data at the server by minimizing the overall resource requirements, yet offering a good navigation quality to the different users. We propose a video representation set optimization for multiview adaptive streaming systems and we show that it is NP-hard. We therefore introduce the concept of multi-view navigation segment that permits to cast the video representation set selection as an integer linear programming problem with a bounded computational complexity. We then show that the proposed solution reduces the computational complexity while preserving optimality in most of the 3D scenes. We then provide simulation results for different classes of users and show the gain offered by an optimal multi-view video representation selection compared to recommended representation sets (e.g., Netflix and Apple ones) or to a baseline representation selection algorithm where the encoding parameters are decided a priori for all the views.
In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs to be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems.
Multiview video with interactive and smooth view switching at the receiver is a challenging application with several issues in terms of effective use of storage and bandwidth resources, reactivity of the system, quality of the viewing experience and system complexity. The classical decoding system for generating virtual views first projects a reference or encoded frame to a given viewpoint and then fills in the holes due to potential occlusions. This last step still constitutes a complex operation with specific software or hardware at the receiver and requires a certain quantity of information from the neighboring frames for insuring consistency between the virtual images. In this work we propose a new approach that shifts most of the burden due to interactivity from the decoder to the encoder, by anticipating the navigation of the decoder and sending auxiliary information that guarantees temporal and interview consistency. This leads to an additional cost in terms of transmission rate and storage, which we minimize by using optimization techniques based on the user behavior modeling. We show by experiments that the proposed system represents a valid solution for interactive multiview systems with classical decoders.
Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives towards rich multimedia applications, it requires the design of novel representations and coding techniques in order to solve the new challenges imposed by interactive navigation. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server can generally not transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Hence, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا