All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by I. Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.