No Arabic abstract
The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is $Lambda (H) propto H^{n+2}$, is discussed in detail. Specifically, by assuming that the ultra-relativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density $rho_r propto T^{4}$, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we findthat the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts thesame correct value of the present day entropy, $S_{0} sim 10^{87-88}$ (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, $rho_{Lambda 0}/rho_{Lambda I} sim10^{-123}$. Such results are independent on the power $n$ and suggests that the observed Universe may evolve smoothly between two extreme, unstable, nonsingular de Sitter phases.
We study particle production and the corresponding entropy increase in the context of cosmology with dynamical vacuum. We focus on the particular form that has been called running vacuum model (RVM), which is known to furnish a successful description of the overall current observations at a competitive level with the concordance $Lambda$CDM model. It also provides an elegant global explanation of the cosmic history from a non-singular initial state in the very early universe up to our days and further into the final de Sitter era. The model has no horizon problem and provides an alternative explanation for the early inflation and its graceful exit, as well as a powerful mechanism for generating the large entropy of the current universe. The energy-momentum tensor of matter is generally non-conserved in such context owing to particle creation or annihilation. We analyze general thermodynamical aspects of particle and entropy production in the RVM. We first study the entropy of particles in the comoving volume during the early universe and late universe. Then, in order to obtain a more physical interpretation, we pay attention to the entropy contribution from the cosmological apparent horizon, its interior and its surface. On combining the inner volume entropy with the entropy on the horizon, we elucidate with detailed calculations whether the evolution of the entropy of the RVM universe satisfies the Generalized Second Law of Thermodynamics. We find it is so and we prove that the essential reason for it is the existence of a positive cosmological constant.
The origin of accelerating expansion of the Universe is one the biggest conundrum of fundamental physics. In this paper we review vacuum energy issues as the origin of accelerating expansion - generally called dark energy - and give an overview of alternatives, which a large number of them can be classified as interacting scalar field models. We review properties of these models both as classical field and as quantum condensates in the framework of non-equilibrium quantum field theory. Finally, we review phenomenology of models with the goal of discriminating between them.
The $Lambda$-term in Einsteins equations is a fundamental building block of the `concordance $Lambda$CDM model of cosmology. Even though the model is not free of fundamental problems, they have not been circumvented by any alternative dark energy proposal either. Here we stick to the $Lambda$-term, but we contend that it can be a `running quantity in quantum field theory (QFT) in curved spacetime. A plethora of phenomenological works have shown that this option can be highly competitive with the $Lambda$CDM with a rigid cosmological term. The, so-called, `running vacuum models (RVMs) are characterized by the vacuum energy density, $rho_{vac}$, being a series of (even) powers of the Hubble parameter and its time derivatives. Such theoretical form has been motivated by general renormalization group arguments, which look plausible. Here we dwell further upon the origin of the RVM structure within QFT in FLRW spacetime. We compute the renormalized energy-momentum tensor with the help of the adiabatic regularization procedure and find that it leads essentially to the RVM form. This means that $rho_{vac}(H)$ evolves as a constant term plus dynamical components ${cal O}(H^2)$ and ${cal O}(H^4)$, the latter being relevant for the early universe only. However, the renormalized $rho_{vac}(H)$ does not carry dangerous terms proportional to the quartic power of the masses ($sim m^4$) of the fields, these terms being a well-known source of exceedingly large contributions. At present, $rho_{vac}(H)$ is dominated by the additive constant term accompanied by a mild dynamical component $sim u H^2$ ($| u|ll1$), which mimics quintessence.
We investigate the running vacuum model (RVM) in the framework of scalar field theory.This dynamical vacuum model provides an elegant global explanation of the cosmic history, namely the universe starts from a non-singular initial de Sitter vacuum stage, it passes smoothly from an early inflationary era to a radiation epoch (graceful exit) and finally it enters the dark matter and dark energy (DE) dominated epochs, where it can explain the large entropy problem and predicts a mild dynamical evolution of the DE. Within this phenomenologically appealing context, we formulate an effective {it classical} scalar field description of the RVM through a field $phi$, called the {it vacuumon}, which turns out to be very helpful for an understanding and practical implementation of the physical mechanisms of the running vacuum during both the early universe and the late time cosmic acceleration. In the early universe the potential for the vacuumon may be mapped to a potential that behaves similarly to that of the scalaron field of Starobinsky-type inflation at the {it classical} level, whilst in the late universe it provides an effective scalar field description of DE. The two representations, however, are not physically equivalent since the mechanisms of inflation are entirely different. Moreover, unlike the scalaron, vacuumon is treated as a classical background field, and not a fully fledged quantum field, hence cosmological perturbations will be different between the two pictures of inflation.
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter sector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.