Do you want to publish a course? Click here

Tunable giant exchange bias in single-phase rare earth-transition metal intermetallics YMn12-xFex with highly homogenous inter-sublattice exchange coupling

158   0   0.0 ( 0 )
 Added by Rui Wu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we have found a family of intermetallic compounds YMn12-xFex (x = 6.6-8.8) showing a bulk form of tunable giant exchange bias effect which arises from global interactions among ferromagnetic (FM) and antiferromagnetic (AFM) sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift up to 6.1 kOe has been observed in YMn4.4Fe7.6 compound with the strongest competing magnetic interactions. In a narrow temperature range, the exchange bias field shows a sudden switching off whereas the coercivity shows a sudden switching on with increasing temperature. This unique feature indicates that the inter-sublattice exchange coupling is highly homogenous, which can be perfectly interperated by our theoretical calculations.



rate research

Read More

The interplay of symmetry and quenched disorder leads to some of the most fundamentally interesting and technologically important properties of correlated materials. It also poses the most vexing of theoretical challenges. Nowhere is this more apparent than in the study of spin glasses. A spin glass is characterized by an ergodic landscape of states - an innumerable number of possibilities that are only weakly distinguished energetically, if at all. We show in the material Fe$_x$NbS$_2$, this landscape of states can be biased by coexisitng antiferromagnetic order. This process leads to a phenomenon of broad technological importance: giant, tunable exchange bias. We observe exchange biases that exceed those of conventional materials by more than two orders of magnitude. This work illustrates a novel route to giant exchange bias by leveraging the interplay of frustration and disorder in exotic materials.
Exchange bias phenomenon is generally ascribed to the exchange coupling at the interfaces between ferromagnetic and antiferromagnetic layers. Here, we propose a bulk form of exchange bias in a single-phase magnet where the coupling between two magnetic sublattices induces a significant shift of the coercive field after a field cooling. Our experiments in a complicated magnet YbFe2O4 demonstrate a giant exchange bias at low temperature when the coupling between the Yb3+ and Fe2+/Fe3+ sublattices take places. The cooling magnetic field dependence and the training effect of exchange bias are consistent with our model. In strong contrast to conventional interfacial exchange bias, this bulk form of exchange bias can be huge, reaching the order of a few Tesla.
The exchange bias effect is an essential component of magnetic memory and spintronic devices. Whereas recent research has shown that anisotropies perpendicular to the device plane provide superior stability against thermal noise, it has proven remarkably difficult to realize perpendicular exchange bias in thin-film structures. Here we demonstrate a strong perpendicular exchange bias effect in heterostructures of the quasi-two-dimensional canted antiferromagnet La$_2$CuO$_4$ and ferromagnetic (La,Sr)MnO$_3$ synthesized by ozone-assisted molecular beam epitaxy. The magnitude of this effect can be controlled via the doping level of the cuprate layers. Canted antiferromagnetism of layered oxides is thus a new and potentially powerful source of uniaxial anisotropy in magnetic devices.
191 - M. Patra , K. De , S. Majumdar 2007
The exchange bias (EB) in LaMn_{0.7}Fe_{0.3}O_3 is observed by the negative shift and training effect of the hysteresis loops, while the sample was cooled in external magnetic field. The analysis of cooling field dependence of EB gives the size of the ferromagnetic (FM) cluster ~ 25 Angstrom, where the magnetic anisotropy of FM cluster is found two order of magnitude higher than the FM bulk manganites. We propose that the nanoscale FM clusters are embedded in the glassy magnetic host with EB at the FM/glassy magnetic interface.
We study the mechanism of orbital-order melting observed at temperature T_OO in the series of rare-earth manganites. We find that many-body super-exchange yields a transition-temperature T_KK that decreases with decreasing rare-earth radius, and increases with pressure, opposite to the experimental T_OO. We show that the tetragonal crystal-field splitting reduces T_KK further increasing the discrepancies with experiments. This proves that super-exchange effects, although very efficient, in the light of the experimentally observed trends, play a minor role for the melting of orbital ordering in rare-earth manganites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا