Do you want to publish a course? Click here

Invoking forbidden modes in SnO_2 nanoparticles using tip enhanced Raman spectroscopy

66   0   0.0 ( 0 )
 Added by S. Dhara SKD
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Raman forbidden modes and surface defect related Raman features in SnO_2 nanostructures carry information about disorder and surface defects which strongly influence important technological applications like catalysis and sensing. Due to the weak intensities of these peaks, it is difficult to identify these features by using conventional Raman spectroscopy. Tip enhanced Raman spectroscopy (TERS) studies conducted on SnO_2 nanoparticles (NPs) of size 4 and 25 nm have offered significant insights of prevalent defects and disorders. Along with one order enhancement in symmetry allowed Raman modes, new peaks related to disorder and surface defects of SnO_2 NPs were found with significant intensity. Temperature dependent Raman studies were also carried out for these NPs and correlated with the TERS spectra. For quasi-quantum dot sized 4 nm NPs, the TERS study was found to be the best technique to probe the finite size related Raman forbidden modes.



rate research

Read More

117 - A. Patsha , S. Dhara , A. K. Tyagi 2016
The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A1 symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however is reported only in the O rich single nanowires with the asymmetric A1(LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires.
Photo-Induced Enhanced Raman Spectroscopy (PIERS) is a new surface enhanced Raman spectroscopy (SERS) modality with an order-of-magnitude Raman signal enhancement of adsorbed analytes over that of typical SERS substrates. Despite the impressive PIERS enhancement factors and explosion in recent demonstrations of its utility, the detailed enhancement mechanism remains undetermined. Using a range of optical and X-ray spectroscopies, supported by density functional theory calculations, we elucidate the chemical and atomic-scale mechanism behind the PIERS enhancement. Stable PIERS substrates with enhancement factors of 10^6 were fabricated using self-organized hexagonal arrays of TiO2 nanotubes that were defect-engineered via annealing in inert atmospheres, and silver nanoparticles were deposited by magnetron sputtering and subsequent thermal dewetting. We identified the key source of the enhancement of PIERS vs. SERS in these structures as an increase in the Raman polarizability of the adsorbed probe molecule upon photo-induced charge transfer. A balance between crystallinity, which enhances charge transfer due to higher electron mobility in anatase-rutile heterostructures but decreases visible light absorption, and oxygen vacancy defects, which increase visible light absorption and photo-induced electron transfers, was critical to achieve high PIERS enhancements.
Tip-enhanced nano-spectroscopy and -imaging, such as tip-enhanced photoluminescence (TEPL), tip-enhanced Raman spectroscopy (TERS), and others, have become indispensable from materials science to single molecule studies. However, the techniques suffer from inconsistent performance due to lack of nanoscale control of tip apex structure, which often leads to irreproducible spectral, spatial, and polarization resolved imaging. Instead of refining tip-fabrication to resolve this problem, we pursue the inverse approach of optimizing the nano-optical vector-field at the tip apex via adaptive optics. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS, with performance exceeding what can be achieved by conventional tip-fabrication and optimal excitation polarization. Employing a sequence feedback algorithm, we achieve 4.4$times$10$^4$-fold TEPL enhancement of a WSe$_2$ monolayer which is >2$times$ larger than the normal TEPL intensity without wavefront shaping, as well as the largest plasmon-enhanced PL intensity of a transition metal dichalcogenide (TMD) monolayer reported to date. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue (BCB) molecules as well as the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced spectroscopy and imaging thus provides for a new systematic approach towards computational nanoscopy making optical nano-imaging more robust, versatile, and widely deployable.
Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behavior and stability of polyynes of different lengths and the overall sp conversion towards sp2 phase.
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here, we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا