No Arabic abstract
While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish.
There is increasing evidence that fish gain energetic benefits when they swim in a school. The most recent indications of such benefits are a lower tail (or fin) beat at the back of a school and reduced oxygen consumption in schooling fish versus solitary ones. How such advantages may arise is poorly understood. Current hydrodynamic theories concern either fish swimming side by side or in a diamond configuration and they largely ignore effects of viscosity and interactions among wakes and individuals. In reality, however, hydrodynamic effects are complex and fish swim in many configurations. Since these hydrodynamic effects are difficult to study empirically, we investigate them in a computer model by incorporating viscosity and interactions among wakes and with individuals. We compare swimming efficiency of mullets of 12.6 cm travelling solitarily and in schools of four different configurations at several inter-individual distances. The resulting Reynolds number (based on fish length) is approximately 1150. We show that these fish always swim more efficiently in a school than alone (except in a dense phalanx). We indicate how this efficiency may emerge from several kinds of interactions among wakes and individuals. Since individuals in our simulations are not even intending to exploit the wake, gains in efficiency are obtained more easily than previously thought.
It is generally accepted that, when moving in groups, animals process information to coordinate their motion. Recent studies have begun to apply rigorous methods based on Information Theory to quantify such distributed computation. Following this perspective, we use transfer entropy to quantify dynamic information flows locally in space and time across a school of fish during directional changes around a circular tank, i.e. U-turns. This analysis reveals peaks in information flows during collective U-turns and identifies two different flows: an informative flow (positive transfer entropy) based on fish that have already turned about fish that are turning, and a misinformative flow (negative transfer entropy) based on fish that have not turned yet about fish that are turning. We also reveal that the information flows are related to relative position and alignment between fish, and identify spatial patterns of information and misinformation cascades. This study offers several methodological contributions and we expect further application of these methodologies to reveal intricacies of self-organisation in other animal groups and active matter in general.
A tragedy of the commons (TOC) occurs when individuals acting in their own self-interest deplete commonly-held resources, leading to a worse outcome than had they cooperated. Over time, the depletion of resources can change incentives for subsequent actions. Here, we investigate long-term feedback between game and environment across a continuum of incentives in an individual-based framework. We identify payoff-dependent transition rules that lead to oscillatory TOC-s in stochastic simulations and the mean field limit. Further extending the stochastic model, we find that spatially explicit interactions can lead to emergent, localized dynamics, including the propagation of cooperative wave fronts and cluster formation of both social context and resources. These dynamics suggest new mechanisms underlying how TOCs arise and how they might be averted.
We implement a simple hydrodynamical model to study behavioural swimming tilt angle of open swimmbladder fish. For this purpose we study the stability of forces acting on a fish swimming horizontally with constant velocity. Additionally, the open swimbladder compression with the depth is modelled by Boyles law. With these, our model gives an analytical solution relating the depth with the body tilt angle and the velocity. An interesting result for steady horizontal swimming is that the body tilt decreases with velocity almost like $v^{-1}$. Moreover, we give an expression for the maximum tilt angle. Then, by introducing the assumption of constant swimming power we relate the swimming velocity with the tilting. Furthermore, we show that the hydrodynamical influence of a temperature gradient produced by a thermocline seems to be negligible for the fish tilting. These results are considerably helpful for more realistic modelling of the emph{acoustic target strength} of fish. Finally, we tested our results by comparing the hydrodynamics solutions with others obtained from acoustic observations and simulations of target strength for Argentine anchovy.
Background: Recent research in animal behaviour has contributed to determine how alignment, turning responses, and changes of speed mediate flocking and schooling interactions in different animal species. Here, we address specifically the problem of what interaction responses support different nearest neighbour configurations in terms of mutual position and distance. Results: We find that the different interaction rules observed in different animal species may be a simple consequence of the relative positions that individuals assume when they move together, and of the noise inherent with the movement of animals, or associated with tracking inaccuracy. Conclusions: The anisotropic positioning of individuals with respect to their neighbours, in combination with noise, can explain several aspects of the movement responses observed in real animal groups, and should be considered explicitly in future models of flocking and schooling. By making a distinction between interaction responses involved in maintaining a preferred flock configuration, and interaction responses directed at changing it, we provide a frame to discriminate movement interactions that signal directional conflict from those underlying consensual group motion.