Do you want to publish a course? Click here

Thin Sequences

60   0   0.0 ( 0 )
 Added by Brett D. Wick
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We look at thin interpolating sequences and the role they play in uniform algebras, Hardy spaces, and model spaces.



rate research

Read More

We provide a new proof of Volbergs Theorem characterizing thin interpolating sequences as those for which the Gram matrix associated to the normalized reproducing kernels is a compact perturbation of the identity. In the same paper, Volberg characterized sequences for which the Gram matrix is a compact perturbation of a unitary as well as those for which the Gram matrix is a Schatten-$2$ class perturbation of a unitary operator. We extend this characterization from $2$ to $p$, where $2 le p le infty$.
We study thin interpolating sequences ${lambda_n}$ and their relationship to interpolation in the Hardy space $H^2$ and the model spaces $K_Theta = H^2 ominus Theta H^2$, where $Theta$ is an inner function. Our results, phrased in terms of the functions that do the interpolation as well as Carleson measures, show that under the assumption that $Theta(lambda_n) to 0$ the interpolation properties in $H^2$ are essentially the same as those in $K_Theta$.
In the present paper, we will study geometric properties of harmonic mappings whose analytic and co-analytic parts are (shifted) generated functions of completely monotone sequences.
160 - Daniel H. Luecking 2014
A sequence which is a finite union of interpolating sequences for $H^infty$ have turned out to be especially important in the study of Bergman spaces. The Blaschke products $B(z)$ with such zero sequences have been shown to be exactly those such that the multiplication $f mapsto fB$ defines an operator with closed range on the Bergman space. Similarly, they are exactly those Blaschke products that boundedly divide functions in the Bergman space which vanish on their zero sequence. There are several characterizations of these sequences, and here we add two more to those already known. We also provide a particularly simple new proof of one of the known characterizations. One of the new characterizations is that they are interpolating sequences for a more general interpolation problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا