A principally novel approach towards solving the few-particle (many-dimensional) quantum scattering problems is described. The approach is based on a complete discretization of few-particle continuum and usage of massively parallel computations of integral kernels for scattering equations by means of GPU. The discretization for continuous spectrum of a few-particle Hamiltonian is realized with a projection of all scattering operators and wave functions onto the stationary wave-packet basis. Such projection procedure leads to a replacement of singular multidimensional integral equations with linear matrix ones having finite matrix elements. Different aspects of the employment of a multithread GPU computing for fast calculation of the matrix kernel of the equation are studied in detail. As a result, the fully realistic three-body scattering problem above the break-up threshold is solved on an ordinary desktop PC with GPU for a rather small computational time.