Do you want to publish a course? Click here

Higher-Dimensional Bell Inequalities with Noisy Qudits

62   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Generalizations of the classic Bell inequality to higher dimensional quantum systems known as qudits are reputed to exhibit a higher degree of robustness to noise, but such claims are based on one particular noise model. We analyze the violation of the Collins-Gisin-Linden-Massar-Popescu inequality subject to more realistic noise sources and their scaling with dimension. This analysis is inspired by potential Bell inequality experiments with superconducting resonator-based qudits. We find that the robustness of the inequality to noise generally decreases with increasing qudit dimension.



rate research

Read More

116 - Marcin Wiesniak , Arijit Dutta , 2014
Greenberger-Horne-Zeilinger states are intuitively known to be the most non-classical ones. They lead to the most radically nonclassical behavior of three or more entangled quantum subsystems. However, in case of two-dimensional systems, it has been shown that GHZ states lead to more robustness of Bell nonclassicality in case of geometrical inequalities than in case of Mermin inequalities. We investigate various strategies of constructing geometrical Bell inequalities (BIs) for GHZ states for any dimensionality of subsystems.
79 - Elena R. Loubenets 2016
Bounds, expressed in terms of d and N, on full Bell locality of a quantum state for $Ngeq 3$ nonlocally entangled qudits (of a dimension $dgeq 2$) mixed with white noise are known, to our knowledge, only within full separability of this noisy N-qudit state. For the maximal violation of general Bell inequalities by an N-partite quantum state, we specify the analytical upper bound expressed in terms of dilation characteristics of this state, and this allows us to find new general bounds in $d, N$, valid for all $dgeq 2$ and all $Ngeq 3$, on full Bell locality under generalized quantum measurements of (i) the N-qudit GHZ state mixed with white noise and (ii) an arbitrary N-qudit state mixed with white noise. The new full Bell locality bounds are beyond the known ranges for full separability of these noisy N-qudit states.
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanical (Tsirelson) bounds for a given Bell inequality in a general scenario is a difficult task which rarely leads to closed-form solutions. Here we introduce a new class of Bell inequalities based on products of correlators that alleviate these issues. Each such Bell inequality is associated with a unique coordination game. In the simplest case, Alice and Bob, each having two random variables, attempt to maximize the area of a rectangle and the rectangles area is represented by a certain parameter. This parameter, which is a function of the correlations between their random variables, is shown to be a Bell parameter, i.e. the achievable bound using only classical correlations is strictly smaller than the achievable bound using non-local quantum correlations We continue by generalizing to the case in which Alice and Bob, each having now n random variables, wish to maximize a certain volume in n-dimensional space. We term this parameter a multiplicative Bell parameter and prove its Tsirelson bound. Finally, we investigate the case of local hidden variables and show that for any deterministic strategy of one of the players the Bell parameter is a harmonic function whose maximum approaches the Tsirelson bound as the number of measurement devices increases. Some theoretical and experimental implications of these results are discussed.
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their nonlinearity; this has nontrivial consequences for the derivation of their local bound, which is not reached by deterministic local correlations. For our simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An interesting application of covariance Bell inequalities is that they can act as shared randomness witnesses: specifically, the value of the Bell expression gives device-independent lower bounds on both the dimension and the entropy of the shared random variable in a local model.
Quantum tomography makes it possible to obtain comprehensive information about certain logical elements of a quantum computer. In this regard, it is a promising tool for debugging quantum computers. The practical application of tomography, however, is still limited by systematic measurement errors. Their main source are errors in the quantum state preparation and measurement procedures. In this work, we investigate the possibility of suppressing these errors in the case of ion-based qudits. First, we will show that one can construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit. Such a protocol is more robust to errors than the measurements in mutually unbiased bases, where the number of operations increases in proportion to the square of the qudit dimension. After that, we will demonstrate the possibility of determining and accounting for the state initialization and readout errors. Together, the measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا