No Arabic abstract
Uber has recently been introducing novel practices in urban taxi transport. Journey prices can change dynamically in almost real time and also vary geographically from one area to another in a city, a strategy known as surge pricing. In this paper, we explore the power of the new generation of open datasets towards understanding the impact of the new disruption technologies that emerge in the area of public transport. With our primary goal being a more transparent economic landscape for urban commuters, we provide a direct price comparison between Uber and the Yellow Cab company in New York. We discover that Uber, despite its lower standard pricing rates, effectively charges higher fares on average, especially during short in length, but frequent in occurrence, taxi journeys. Building on this insight, we develop a smartphone application, OpenStreetCab, that offers a personalized consultation to mobile users on which taxi provider is cheaper for their journey. Almost five months after its launch, the app has attracted more than three thousand users in a single city. Their journey queries have provided additional insights on the potential savings similar technologies can have for urban commuters, with a highlight being that on average, a user in New York saves 6 U.S. Dollars per taxi journey if they pick the cheapest taxi provider. We run extensive experiments to show how Ubers surge pricing is the driving factor of higher journey prices and therefore higher potential savings for our applications users. Finally, motivated by the observation that Ubers surge pricing is occurring more frequently that intuitively expected, we formulate a prediction task where the aim becomes to predict a geographic areas tendency to surge. Using exogenous to Uber datasets we show how it is possible to estimate customer demand within an area, and by extension surge pricing, with high accuracy.
In modern metropolitan cities, the task of ensuring safe roads is of paramount importance. Automated systems of e-challans (Electronic traffic-violation receipt) are now being deployed across cities to record traffic violations and to issue fines. In the present study, an automated e-challan system established in Ahmedabad (Gujarat, India) has been analyzed for characterizing user behaviour, violation types as well as finding spatial and temporal patterns in the data. We describe a method of collecting e-challan data from the e-challan portal of Ahmedabad traffic police and create a dataset of over 3 million e-challans. The dataset was first analyzed to characterize user behaviour with respect to repeat offenses and fine payment. We demonstrate that a lot of users repeat their offenses (traffic violation) frequently and are less likely to pay fines of higher value. Next, we analyze the data from a spatial and temporal perspective and identify certain spatio-temporal patterns present in our dataset. We find that there is a drastic increase/decrease in the number of e-challans issued during the festival days and identify a few hotspots in the city that have high intensity of traffic violations. In the end, we propose a set of 5 features to model recidivism in traffic violations and train multiple classifiers on our dataset to evaluate the effectiveness of our proposed features. The proposed approach achieves 95% accuracy on the dataset.
The global outbreak of COVID-19 has led to focus on efforts to manage and mitigate the continued spread of the disease. One of these efforts include the use of contact tracing to identify people who are at-risk of developing the disease through exposure to an infected person. Historically, contact tracing has been primarily manual but given the exponential spread of the virus that causes COVID-19, there has been significant interest in the development and use of digital contact tracing solutions to supplement the work of human contact tracers. The collection and use of sensitive personal details by these applications has led to a number of concerns by the stakeholder groups with a vested interest in these solutions. We explore digital contact tracing solutions in detail and propose the use of a transparent reporting mechanism, FactSheets, to provide transparency of and support trust in these applications. We also provide an example FactSheet template with questions that are specific to the contact tracing application domain.
With spatial analytic, econometric, and visualization tools, this book chapter investigates greenhouse gas emissions for the on-road passenger vehicle transport sector in the Boston metropolitan area in 2014. It compares greenhouse gas emission estimations from both the production-based and consumption-based perspectives with two large-scale administrative datasets: the vehicle odometer readings from individual vehicle annual inspection, and the road inventory data containing road segment level geospatial and traffic information. Based on spatial econometric models that examine socioeconomic and built environment factors contributing to the vehicle miles traveled at the census tract level, it offers insights to help cities reduce VMT and carbon footprint for passenger vehicle travel. Finally, it recommends a pathway for cities and towns in the Boston metropolitan area to curb VMT and mitigate carbon emissions to achieve climate goals of carbon neutrality.
As modern transportation systems become more complex, there is need for mobile applications that allow travelers to navigate efficiently in cities. In taxi transport the recent proliferation of Uber has introduced new norms including a flexible pricing scheme where journey costs can change rapidly depending on passenger demand and driver supply. To make informed choices on the most appropriate provider for their journeys, travelers need access to knowledge about provider pricing in real time. To this end, we developed OpenStreetcab a mobile application that offers advice on taxi transport comparing provider prices. We describe its development and deployment in two cities, London and New York, and analyse thousands of user journey queries to compare the price patterns of Uber against major local taxi providers. We have observed large heterogeneity across the taxi transport markets in the two cities. This motivated us to perform a price validation and measurement experiment on the ground comparing Uber and Black Cabs in London. The experimental results reveal interesting insights: not only they confirm feedback on pricing and service quality received by professional drivers users, but also they reveal the tradeoffs between prices and journey times between taxi providers. With respect to journey times in particular, we show how experienced taxi drivers, in the majority of the cases, are able to navigate faster to a destination compared to drivers who rely on modern navigation systems. We provide evidence that this advantage becomes stronger in the centre of a city where urban density is high.
Anticipating the political behavior of people will be considerable help for election candidates to assess the possibility of their success and to be acknowledged about the public motivations to select them. In this paper, we provide a general schematic of the architecture of participation anticipating system in presidential election by using KNN, Classification Tree and Naive Bayes and tools orange based on crisp which had hopeful output. To test and assess the proposed model, we begin to use the case study by selecting 100 qualified persons who attend in 11th presidential election of Islamic republic of Iran and anticipate their participation in Kohkiloye & Boyerahmad. We indicate that KNN can perform anticipation and classification processes with high accuracy in compared with two other algorithms to anticipate participation.