Do you want to publish a course? Click here

Sex differences in social focus across the lifecycle in humans

58   0   0.0 ( 0 )
 Added by Kunal Bhattacharya
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Age and gender are two important factors that play crucial roles in the way organisms allocate their social effort. In this study, we analyse a large mobile phone dataset to explore the way lifehistory influences human sociality and the way social networks are structured. Our results indicate that these aspects of human behaviour are strongly related to the age and gender such that younger individuals have more contacts and, among them, males more than females. However, the rate of decrease in the number of contacts with age differs between males and females, such that there is a reversal in the number of contacts around the late 30s. We suggest that this pattern can be attributed to the difference in reproductive investments that are made by the two sexes. We analyse the inequality in social investment patterns and suggest that the age and gender-related differences that we find reflect the constraints imposed by reproduction in a context where time (a form of social capital) is limited.



rate research

Read More

In human relations individuals gender and age play a key role in the structures and dynamics of their social arrangements. In order to analyze the gender preferences of individuals in interaction with others at different stages of their lives we study a large mobile phone dataset. To do this we consider four fundamental gender-related caller and callee combinations of human interactions, namely male to male, male to female, female to male, and female to female, which together with age, kinship, and different levels of friendship give rise to a wide scope of human sociality. Here we analyse the relative strength of these four types of interaction using a large dataset of mobile phone communication records. Our analysis suggests strong age dependence for an ego of one gender choosing to call an individual of either gender. We observe a strong opposite sex bonding across most of their reproductive age. However, older women show a strong tendency to connect to another female that is one generation younger in a way that is suggestive of the emph{grandmothering effect}. We also find that the relative strength among the four possible interactions depends on phone call duration. For calls of medium and long duration, opposite gender interactions are significantly more probable than same gender interactions during the reproductive years, suggesting potential emotional exchange between spouses. By measuring the fraction of calls to other generations we find that mothers tend to make calls more to their daughters than to their sons, whereas fathers make calls more to their sons than to their daughters. For younger people, most of their calls go to same generation alters, while older people call the younger people more frequently, which supports the suggestion that emph{affection flows downward}.
Social network is a main tunnel of rumor spreading. Previous studies are concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first 6 mouth-to-mouth transmissions cite{TPR}. Based on the facts, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to its neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multi-revised version of the rumor, if the modifiers dominate the networks. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.
An increasing number of todays social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the services purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, news feeds exposing broadcasted content, etc. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter we describe some of the results of research studies on the structure, dynamics and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies and computer science.
The social network maintained by a focal individual, or ego, is intrinsically dynamic and typically exhibits some turnover in membership over time as personal circumstances change. However, the consequences of such changes on the distribution of an egos network ties are not well understood. Here we use a unique 18-month data set that combines mobile phone calls and survey data to track changes in the ego networks and communication patterns of students making the transition from school to university or work. Our analysis reveals that individuals display a distinctive and robust social signature, captured by how interactions are distributed across different alters. Notably, for a given ego, these social signatures tend to persist over time, despite considerable turnover in the identity of alters in the ego network. Thus as new network members are added, some old network members are either replaced or receive fewer calls, preserving the overall distribution of calls across network members. This is likely to reflect the consequences of finite resources such as the time available for communication, the cognitive and emotional effort required to sustain close relationships, and the ability to make emotional investments.
Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be present in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا