No Arabic abstract
Electronic Raman scattering with in and out of (ab) plane polarizations have been performed on HgBa2Ca2Cu3O8+d in a slightly underdoped single crystal with a critical temperature Tc=122 K. We find that the d-wave pairing gap at the antinodes is higher in energy (14 kBTc) than in other cuprates and that it varies very slowly up to Tc. This hints at a strong coupling nature of the pairing mechanism. Interestingly, we reveal that the pairing-gap feature in the Raman response displays a complex peak-dip-hump structure, in a fashion reminiscent of what observed by angle resolved photo-emission spectroscopy in Bi2Sr2CaCu2O8+d (Bi-2212). We detect two other distinct superconducting peaks at 5kBTc and 7kBTc when probing respectively around the nodes and on the whole Fermi surface. Finally we establish that the pairing gap at the antinodes is detected both for (ab) plane and for c-axis light polarizations. This shows that the quasiparticle dynamics along the c-axis is intimately connected to the antinodal one in the (ab) plane.
We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it as s-wave component mixing into d-wave, although the crystal structure is tetragonal. Since similar phenomena were observed also in YBa2Cu3Oy and Bi2Sr2CaCu2Oz, we conclude that s-wave mixing is a common property for overdoped high-Tc superconductors.
We explored by electronic Raman scattering the superconducting state of Bi-2212 single crystal by performing a fine tuned doping study. We found three distinct energy scales in A1g, B1g and B2g symmetries which show three distinct doping dependencies. Above p=0.22 the three energies merge, below p=0.12, the A1g scale is no more detectable while the B1g and B2g scales become constant in energy. In between, the A1g and B1g scales increase monotonically with under-doping while the B2g one exhibits a maximum at p=0.16. The three superconducting energy scales appear to be an universal feature of hole-doped cuprates. We propose that the non trivial doping dependence of the three scales originates from Fermi surface topology changes and reveals competing orders inside the superconducting dome.
We present Raman experiments on underdoped and overdoped Bi2Sr2CaCu2O(8+d) (Bi-2212) single crystals. We reveal the pseudogap in the electronic Raman spectra in the B1g and B2g geometries. In these geometries we probe respectively, the antinodal (AN) and nodal (N) regions corresponding to the principal axes and the diagonal of the Brillouin zone. The pseudogap appears in underdoped regime and manifests itself in the B1g spectra by a strong depletion of the low energy electronic continuum as the temperature decreases. We define a temperature T* below which the depletion appears and the pseudogap energy, omegaPG the energy at which the depeletion closes. The pseudogap is also present in the B2g spectra but the depletion opens at higher energy than in the B1g spectra. We observe the creation of new electronic states inside the depletion as we enter the superconducting phase. This leads us to conclude (as proposed by S. Sakai et al.) that the pseudogap has a different structure than the superconducting gap and competes with it. We show that the nodal quasiparticle dynamic is very robust and almost insensitive to the pseudogap phase contrary to the antinodal quasiparticle dynamic. We finally reveal, in contrast to what it is usually admitted,an increase of the nodal quasiparticle spectral weight with underdoping. We interpret this result as the consequence of a possible Fermi surface disturbances in the doping range p=0.1-0.2.
Extensive research into high temperature superconducting cuprates is now focused upon identifying the relationship between the classic pseudogap phenomenon$^{1,2}$ and the more recently investigated density wave state$^{3-13}$. This state always exhibits wave vector $Q$ parallel to the planar Cu-O-Cu bonds$^{4-13}$ along with a predominantly $d$-symmetry form factor$^{14-17}$ (dFF-DW). Finding its microscopic mechanism has now become a key objective$^{18-30}$ of this field. To accomplish this, one must identify the momentum-space ($k$-space) states contributing to the dFF-DW spectral weight, determine their particle-hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization$^{14}$ of electronic structure and show that the characteristic energy of the dFF-DW modulations is actually the pseudogap energy $Delta_{1}$. Moreover, we demonstrate that the dFF-DW modulations at $E=-Delta_{1}$ (filled states) occur with relative phase $pi$ compared to those at $E=Delta_{1}$ (empty states). Finally, we show that the dFF-DW $Q$ corresponds directly to scattering between the hot frontier regions of $k$-space beyond which Bogoliubov quasiparticles cease to exist$^{31,32,33}$. These data demonstrate that the dFF-DW state is consistent with particle-hole interactions focused at the pseudogap energy scale and between the four pairs of hot frontier regions in $k$-space where the pseudogap opens.
We report the successful synthesis of single-crystalline cuprate superconductors HgBa$_{2}$CaCu$_{2}$O$_{6+delta}$ and HgBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{8+delta}$. These compounds are well-known for their high optimal superconducting critical temperatures of $T_mathrm{c}$ = 128 K and 134 K at ambient pressure, respectively, and for their challenging synthesis. Using a conventional quartz-tube encapsulation method and a two-layer encapsulation method that utilizes custom-built high-pressure furnaces, we are able to grow single crystals with linear dimensions up to several millimeters parallel to the CuO$_2$ planes. Extended post-growth anneals are shown to lead to sharp superconducting transitions, indicative of high macroscopic homogeneity. X-ray diffraction and polarized Raman spectroscopy are identified as viable methods to resolve the seemingly unavoidable inter-growth of the two compounds. Our work helps to remove obstacles toward the study of these model cuprate systems with experimental probes that require sizable high-quality crystals.