Do you want to publish a course? Click here

The Flux Qubit Revisited to Enhance Coherence and Reproducibility

263   0   0.0 ( 0 )
 Added by Fei Yan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of $40,mu$s at its flux-insensitive point. Qubit relaxation times $T_1$ across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in $T_2approx 85,mu$s, approximately the $2T_1$ limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting $T_2$ in contemporary qubits based on transverse qubit-resonator interaction.



rate research

Read More

The identification of spacial noise correlation is of critical importance in developing error-corrected quantum devices, but it has barely been studied so far. In this work, we utilize an effective new method called qubit motion, to efficiently determine the noise correlations between any pair of qubits in a 7-qubit superconducting quantum system. The noise correlations between the same pairs of qubits are also investigated when the qubits are at distinct operating frequencies. Whats more, in this multi-qubit system with the presence of noise correlations, we demonstrate the enhancing effect of qubit motion on the coherence of logic qubit, and we propose a Motion-CPMG operation sequence to more efficiently protect the logic state from decoherence, which is experimentally demonstrated to extend the decoherence time of logic qubit by nearly one order of magnitude.
Computational methods have reshaped the landscape of modern biology. While the biomedical community is increasingly dependent on computational tools, the mechanisms ensuring open data, open software, and reproducibility are variably enforced by academic institutions, funders, and publishers. Publications may present academic software for which essential materials are or become unavailable, such as source code and documentation. Publications that lack such information compromise the role of peer review in evaluating technical strength and scientific contribution. Incomplete ancillary information for an academic software package may bias or limit any subsequent work produced with the tool. We provide eight recommendations across four different domains to improve reproducibility, transparency, and rigor in computational biology - precisely on the main values which should be emphasized in life science curricula. Our recommendations for improving software availability, usability, and archival stability aim to foster a sustainable data science ecosystem in biomedicine and life science research.
We demonstrate theoretically the noise-stimulated enhancement of quantum coherence in a superconducting flux qubit. First, an external classical noise can increase the off-diagonal components of the qubit density matrix. Second, in the presence of noise, the Rabi oscillations survive for times significantly longer than the Rabi decay time in a noiseless system. These Rabi oscillations appear as a modulation of the forced response of the qubit to the ac driving field. These effects can be considered as a manifestation of quantum stochastic resonance and are relevant to experimental techniques, such as Rabi spectroscopy.
The current-mirror circuit [A. Kitaev, arXiv:cond-mat/0609441 (2006)] exhibits a robust ground-state degeneracy and wave functions with disjoint support for appropriate circuit parameters. In this protected regime, Cooper-pair excitons form the relevant low-energy excitations. Based on a full circuit analysis of the current-mirror device, we introduce an effective model that systematically captures the relevant low-energy degrees of freedom, and is amenable to diagonalization using Density Matrix Renormalization Group (DMRG) methods. We find excellent agreement between DMRG and exact diagonalization, and can push DMRG simulations to much larger circuit sizes than feasible for exact diagonalization. We discuss the spectral properties of the current-mirror circuit, and predict coherence times exceeding 1 ms in parameter regimes believed to be within reach of experiments.
132 - Pankaj K. Jha 2013
Quantum coherence and interference effects in atomic and molecular physics has been extensively studied due to intriguing counterintuitive physics and potential important applications. Here we present one such application of using quantum coherence to generate and enhance gain in extreme ultra-violet(XUV)(@58.4nm in Helium) and infra-red(@794.76nm in Rubidium) regime of electromagnetic radiation. We show that using moderate external coherent drive, a substantial enhancement in the energy of the lasing pulse can be achieved under optimal conditions. We also discuss the role of coherence. The present paper is intended to be pedagogical on this subject of coherence-enhanced lasing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا