Do you want to publish a course? Click here

First Light with ALES: A 2-5 Micron Adaptive Optics Integral Field Spectrograph for the LBT

142   0   0.0 ( 0 )
 Added by Andrew Skemer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integral field spectrographs are an important technology for exoplanet imaging, due to their ability to take spectra in a high-contrast environment, and improve planet detection sensitivity through spectral differential imaging. ALES is the first integral field spectrograph capable of imaging exoplanets from 3-5$mu$m, and will extend our ability to characterize self-luminous exoplanets into a wavelength range where they peak in brightness. ALES is installed inside LBTI/LMIRcam on the Large Binocular Telescope, taking advantage of existing AO systems, camera optics, and a HAWAII-2RG detector. The new optics that comprise ALES are a Keplerian magnifier, a silicon lenslet array with diffraction suppressing pinholes, a direct vision prism, and calibration optics. All of these components are installed in filter wheels making ALES a completely modular design. ALES saw first light at the LBT in June 2015.

rate research

Read More

The integral field spectrograph configuration of the LMIRCam science camera within the Large Binocular Telescope Interferometer (LBTI) facilitates 2 to 5 $mu$m spectroscopy of directly imaged gas-giant exoplanets. The mode, dubbed ALES, comprises magnification optics, a lenslet array, and direct-vision prisms, all of which are included within filter wheels in LMIRCam. Our observing approach includes manual adjustments to filter wheel positions to optimize alignment, on/off nodding to track sky-background variations, and wavelength calibration using narrow band filters in series with ALES optics. For planets with separations outside our 1x1 field of view, we use a three-point nod pattern to visit the primary, secondary and sky. To minimize overheads we select the longest exposure times and nod periods given observing conditions, especially sky brightness and variability. Using this strategy we collected several datasets of low-mass companions to nearby stars.
We present adaptive optics images of the extreme red supergiant VY Canis Majoris in the Ks, L and M bands (2.15 to 4.8 micron) made with LMIRCam on the Large Binocular Telescope (LBT). The peculiar Southwest Clump previously imaged from 1 to 2.2 micron appears prominently in all three filters. We find its brightness is due almost entirely to scattering, with the contribution of thermal emission limited to at most 25%. We model its brightness as optically thick scattering from silicate dust grains using typical size distributions. We find a lower limit mass for this single feature of 5E-03 Msun to 2.5E-02 Msun depending on the assumed gas-to-dust ratio. The presence of the Clump as a distinct feature with no apparent counterpart on the other side of the star is suggestive of an ejection event from a localized region of the star and is consistent with VY CMas history of asymmetric high mass loss events.
We present the Phase A Science Case for the Multi-conjugate Adaptive-optics Visible Imager-Spectrograph (MAVIS), planned for the Adaptive Optics Facility (AOF) of the Very Large Telescope (VLT). MAVIS is a general-purpose instrument for exploiting the highest possible angular resolution of any single optical telescope available in the next decade, either on Earth or in space, and with sensitivity comparable to (or better than) larger aperture facilities. MAVIS uses two deformable mirrors in addition to the deformable secondary mirror of the AOF, providing a mean V-band Strehl ratio of >10% (goal >15%) across a relatively large (30 arc second) science field. This equates to a resolution of <20mas at 550nm - comparable to the K-band diffraction limit of the next generation of extremely large telescopes, making MAVIS a genuine optical counterpart to future IR-optimised facilities like JWST and the ELT. Moreover, MAVIS will have unprecedented sky coverage for a high-order AO system, accessing at least 50% of the sky at the Galactic Pole, making MAVIS a truly general purpose facility instrument. As such, MAVIS will have both a Nyquist-sampled imager (30x30 arcsec field), and a powerful integral field spectrograph with multiple spatial and spectral modes spanning 370-1000nm. This science case presents a distilled set of thematically linked science cases drawn from the MAVIS White Papers (www.mavis-ao.org/whitepapers), selected to illustrate the driving requirements of the instrument resulting from the recent MAVIS Phase A study.
The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.
130 - Neil Zimmerman 2011
Project 1640 is a high contrast near-infrared instrument probing the vicinities of nearby stars through the unique combination of an integral field spectrograph with a Lyot coronagraph and a high-order adaptive optics system. The extraordinary data reduction demands, similar those which several new exoplanet imaging instruments will face in the near future, have been met by the novel software algorithms described herein. The Project 1640 Data Cube Extraction Pipeline (PCXP) automates the translation of 3.8*10^4 closely packed, coarsely sampled spectra to a data cube. We implement a robust empirical model of the spectrograph focal plane geometry to register the detector image at sub-pixel precision, and map the cube extraction. We demonstrate our ability to accurately retrieve source spectra based on an observation of Saturns moon Titan.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا