Do you want to publish a course? Click here

Comparing models for the ground state energy of a trapped one-dimensional Fermi gas with a single impurity

115   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the local density approximation approach to calculating the ground state energy of a one-dimensional Fermi gas containing a single impurity, and compare the results with exact numerical values that we have for up to 11 particles for general interaction strengths and up to 30 particles in the strongly interacting case. We also calculate the contact coefficient in the strongly interacting regime. The different theoretical predictions are compared to recent experimental results with few-atom systems. Firstly, we find that the local density approximation suffers from great ambiguity in the few-atom regime, yet it works surprisingly well for some models. Secondly, we find that the strong interaction theories quickly break down when the number of particles increase or the interaction strength decreases.



rate research

Read More

Properties of a single impurity in a one-dimensional Fermi gas are investigated in homogeneous and trapped geometries. In a homogeneous system we use McGuires expression [J. B. McGuire, J. Math. Phys. 6, 432 (1965)] to obtain interaction and kinetic energies, as well as the local pair correlation function. The energy of a trapped system is obtained (i) by generalizing McGuire expression (ii) within local density approximation (iii) using perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that a closed formula based on the exact solution of the homogeneous case provides a precise estimation for the energy of a trapped system for arbitrary coupling constant of the impurity even for a small number of fermions. We analyze energy contributions from kinetic, interaction and potential components, as well as spatial properties such as the system size. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional $^{87}$Rb Bose gas, and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in-situ measurements and Quantum Monte Carlo simulations, which we attribute to a non-linear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time-of-flight, taking advantage of their self-similarity in a two-dimensional expansion.
We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi one dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree method for bosons, a numerical exact approach to simulate quantum many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground state of the atomic ensemble in the presence of an ion. We analyse the influence of the atom number and the atom-atom interaction on the ground state properties. Interestingly, for weakly interacting atoms, we find that the ion impedes the transition from the ideal gas behaviour to the Thomas-Fermi limit. Furthermore, we show that this effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first building block for systematically investigate many-body physics of such hybrid system.
We propose an experimental scheme to simulate the fractionalization of particle number by using a one-dimensional spin-orbit coupled ultracold fermionic gas. The wanted spin-orbit coupling, a kink-like potential, and a conjugation-symmetry-breaking mass term are properly constructed by laser-atom interactions, leading to an effective low-energy relativistic Dirac Hamiltonian with a topologically nontrivial background field. The designed system supports a localized soliton excitation with a fractional particle number that is generally irrational and experimentally tunable, providing a direct realization of the celebrated generalized-Su-Schrieffer-Heeger model. In addition, we elaborate on how to detect the induced soliton mode with the FPN in the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا