Do you want to publish a course? Click here

Crossing integer spin resonance at VEPP-4M with conservation of beam polarization

64   0   0.0 ( 0 )
 Added by Ivan Nikolaev
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method proposed to preserve the electron beam polarization at the VEPP-4M collider during acceleration with crossing the integer (imperfection) spin resonance at energy E=1763 MeV has been successfully applied. It is based on full decompensation of the $ 0.6times3.3$ Tesla$times$meter integral of the KEDR detector longitudinal magnetic field due to the anti-solenoids switched-off.



rate research

Read More

We recently used an rf solenoid to study the widths of rf spin resonances with both unbunched and bunched beams of 2.1 GeV_c polarized protons stored in the COSY synchrotron. A map, with unbunched beam at different fixed rf-solenoid frequencies, showed a very shallow possible depolarization dip at the resonance. Next we made frequency sweeps of 400Hz, centered at similar frequencies, which greatly enhanced the dip. But, with a bunched proton beam, both the fixed-frequency and frequency-sweep techniques produced similar maps, and both bunched maps showed full beam depolarization over a wide region. Moreover, both were more than twice as wide as the unbunched dip. This widening of the proton resonance due to bunching is exactly opposite to the recently observed narrowing of deuteron resonances due to bunching.
For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry $A_{mathrm{n}}$, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction $^{12}mathrm C(vec e,e)^{12}mathrm C$. Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has been developed to overcome the lack of a polarimeter setup sensitive to the vertical polarization component.
250 - Y. Cai , Y. Nosochkov 2003
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and distortion of beta function after correction was investigated.
90 - Derong Xu , Yue Hao , Yun Luo 2020
Crab crossing scheme is an essential collision scheme to achieve high luminosity for the future colliders with large crossing angles. However, when bunch length of one or both colliding beams is comparable with the wavelength of the crab cavity voltage, the nonlinear dependence of the crabbing kick may present a challenge to the beam dynamics of the colliding beams and impact the beam quality as well as the luminosity lifetime. In this paper, the results of nonlinear dynamics in the crab crossing scheme are presented, using both analytical and numerical studies. The result indicates that higher-order synchro-betatron resonances may be excited in the crab crossing scheme with large crossing angle, which causes the beam quality deterioration and luminosity degradation. The studies also reveal possible countermeasures to suppress the synchro-beta resonance, hence mitigate the degradation of beam quality and luminosity.
The ILC accelerator parameters and detector concepts are still under discussion in the world-wide community. As will be shown, the performance of the BeamCal, the calorimeter in the very forward area of the ILC detector, is very sensitive to the beam parameter and crossing angle choices. We propose here BeamCal designs for a small (0 or 2 mrad) and large (20 mrad) crossing angles and report about the veto performance study done. As illustration, the influence of several proposed beam parameter sets and crossing-angles on the signal to background ratio in the stau search is estimated for a particular realization of the super-symmetric model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا