Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid


Abstract in English

We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding Fokker-Planck equation. Two key characteristics of the rotational dynamics, the average angular frequency of precession of nanoparticles and their average magnetization, are of our interest. Using the Langevin and Fokker-Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal fluctuations.

Download