Do you want to publish a course? Click here

The Ages of A-Stars I: Interferometric Observations and Age Estimates for Stars in the Ursa Major Moving Group

335   0   0.0 ( 0 )
 Added by Jeremy Jones
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed and spatially resolved a set of seven A-type stars in the nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners on the CHARA Array. At least four of these stars have large rotational velocities ($v sin i$ $gtrsim$ 170 $mathrm{km~s^{-1}}$) and are expected to be oblate. These interferometric measurements, the stars observed photometric energy distributions, and $v sin i$ values are used to computationally construct model oblate stars from which stellar properties (inclination, rotational velocity, and the radius and effective temperature as a function of latitude, etc.) are determined. The results are compared with MESA stellar evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The value of this new technique is that it enables the estimation of the fundamental properties of rapidly rotating stars without the need to fully image the star. It can thus be applied to stars with sizes comparable to the interferometric resolution limit as opposed to those that are several times larger than the limit. Under the assumption of coevality, the spread in ages can be used as a test of both the prescription presented here and the MESA evolutionary code for rapidly rotating stars. With our validated technique, we combine these age estimates and determine the age of the moving group to be 414 $pm$ 23 Myr, which is consistent with, but much more precise than previous estimates.

rate research

Read More

We present the results of a survey to detect low-mass companions of UMa group members, carried out in 2003-2006 with NACO at the ESO VLT. While many extra-solar planets and planetary candidates have been found in close orbits around stars by the radial velocity and the transit method, direct detections at wider orbits are rare. The Ursa Major (UMa) group, a young stellar association at an age of about 200-600 Myr and an average distance of 25 pc, has not yet been addressed as a whole although its members represent a very interesting sample to search for and characterize sub-stellar companions by direct imaging. Our goal was to find or to provide detection limits on wide sub-stellar companions around nearby UMa group members using high-resolution imaging. We searched for faint companions around 20 UMa group members within 30 pc. The primaries were placed below a semi-transparent coronagraph, a rather rarely used mode of NACO, to increase the dynamic range of the images. In most cases, second epoch images of companion candidates were taken to check whether they share common proper motion with the primary. Our coronagraphic images rule out sub-stellar companions around the stars of the sample. A dynamical range of typically 13-15 mag in the Ks band was achieved at separations beyond 3 from the star. Candidates as faint as Ks ~ 20 were securely identified and measured. The survey is most sensitive between separations of 100 and 200 au but only on average because of the very different target distance. Field coverage reaches about 650 au for the most distant targets. Most of the 200 candidates are visible in two epochs. All of those were rejected being distant background objects.
Until now, most members of the Ursa Major (UMa) group of stars have been identified by means of kinematic criteria. However, in many cases kinematic criteria alone are insufficient to ascertain, whether an individual star is really a member of this group. Since photometric criteria are ineffective in the case of cool dwarf members, one must use spectroscopic criteria. Nevertheless, resulting membership criteria are inconclusive. We reanalyse spectroscopic properties of cool UMa group dwarfs. In particular, we study the distribution of iron abundance, the strength of the Li I absorption at 6708 A and the Li abundance, and the infilling of the core of the H alpha line. Twenty-five cool and northern bona-fide members are carefully selected from the literature. Homogeneously measured stellar parameters and iron abundances are given for all Sun-like stars selected, based on spectra of high resolution and high signal-to-noise ratio. In addition, we measure the Li equivalent width and abundance as well as the relative intensity of the H alpha core and the corresponding chromospheric flux. The studied stars infer an average Ursa Major group iron abundance of -0.03+-0.05 dex, which is higher by about 0.06 dex than determined elsewhere. The Li abundance derived of Ursa Major group dwarf stars is higher than in the Hyades at effective temperatures cooler than the Sun, but lower than in the younger Pleiades, a result which is independent of the exact value of the effective temperature adopted. The Sun-like and cooler dwarfs also display chromospheric infilling of the H alpha core. We present spectroscopic criteria that may be used to exclude non-members.
Context. Precise determination of stellar masses is necessary to test the validity of pre-main-sequence (PMS) stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 Msun. To improve such a test, and based on our previous studies, we selected the AB Doradus moving group (AB Dor-MG) as the best-suited association on which to apply radio-based high-precision astrometric techniques to study binary systems. Aims. We seek to determine precise estimates of the masses of a set of stars belonging to the AB Dor-MG using radio and infrared observations. Methods. We observed in phase-reference mode with the Very Large Array (VLA) at 5 GHz and with the European VLBI Network (EVN) at 8.4 GHz the stars HD 160934, EK Dra, PW And, and LO Peg. We also observed some of these stars with the near-infrared CCD AstraLux camera at the Calar Alto observatory to complement the radio observations. Results. We determine model-independent dynamical masses of both components of the star HD 160934, A and c, which are 0.70+/-0.07 Msun and 0.45+/-0.04 Msun , respectively. We revised the orbital parameters of EK Dra and we determine a sum of the masses of the system of 1.38+/-0.08 Msun. We also explored the binarity of the stars LO Peg and PW And. Conclusions. We found observational evidence that PMS evolutionary models underpredict the mass of PMS stars by 10%-40%, as previously reported by other authors. We also inferred that the origin of the radio emission must be similar in all observed stars, that is, extreme magnetic activity of the stellar corona that triggers gyrosynchrotron emission from non-thermal, accelerated electrons.
The magnetic field is a key ingredient in the recipe of star formation. Over the past two decades, millimeter and submillimeter interferometers have made major strides in unveiling the role of the magnetic field in star formation at progressively smaller spatial scales. From the kiloparsec scale of molecular clouds down to the inner few hundred au immediately surrounding forming stars, the polarization at millimeter and submillimeter wavelengths is dominated by polarized thermal dust emission, where the dust grains are aligned relative to the magnetic field. Interferometric studies have focused on this dust polarization and occasionally on the polarization of spectral-line emission. We review the current state of the field of magnetized star formation in the context of several questions that continue to motivate the studies of high- and low-mass star formation. By aggregating and analyzing the results from individual studies, we come to several conclusions: (1) Magnetic fields and outflows from low-mass protostellar cores are randomly aligned, suggesting that the magnetic field at ~1000 au scales is not the dominant factor in setting the angular momentum of embedded disks and outflows. (2) Recent measurements of the thermal and dynamic properties in high-mass star-forming regions reveal small virial parameters, challenging the assumption of equilibrium star formation. However, we estimate that a magnetic field strength of a fraction of a mG to several mG in these objects could bring the dense gas close to a state of equilibrium. Finally, (3) We find that the small number of sources with hourglass-shaped magnetic field morphologies at 0.01 -- 0.1 pc scales cannot be explained purely by projection effects, suggesting that while it does occur occasionally, magnetically dominated core collapse is not the predominant mode of low- or high-mass star formation. [Abridged]
130 - L. M. Rebull 2008
We present Multiband Imaging Photometer for Spitzer (MIPS) observations at 24 and 70 microns for 30 stars, and at 160 microns for a subset of 12 stars, in the nearby (~30 pc), young (~12 Myr) Beta Pictoris Moving Group (BPMG). In several cases, the new MIPS measurements resolve source confusion and background contamination issues in the IRAS data for this sample. We find that 7 members have 24 micron excesses, implying a debris disk fraction of 23%, and that at least 11 have 70 micron excesses (disk fraction of >=37%). Five disks are detected at 160 microns (out of a biased sample of 12 stars observed), with a range of 160/70 flux ratios. The disk fraction at 24 and 70 microns, and the size of the excesses measured at each wavelength, are both consistent with an inside-out infrared excess decrease with time, wherein the shorter-wavelength excesses disappear before longer-wavelength excesses, and consistent with the overall decrease of infrared excess frequency with stellar age, as seen in Spitzer studies of other young stellar groups. Assuming that the infrared excesses are entirely due to circumstellar disks, we characterize the disk properties using simple models and fractional infrared luminosities. Optically thick disks, seen in the younger TW Hya and eta Cha associations, are entirely absent in the BPMG. Additional flux density measurements at 24 and 70 microns are reported for nine Tucanae-Horologium Association member stars. Since this is <20% of the association membership, limited analysis on the complete disk fraction of this association is possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا