Do you want to publish a course? Click here

Infrared spectral properties of M giants

100   0   0.0 ( 0 )
 Added by G. C. Sloan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed a sample of 20 M giants with the Infrared Spectrograph on the Spitzer Space Telescope. Most show absorption structure at 6.6-6.8 um which we identify as water vapor, and in some cases, the absorption extends from 6.4 um into the SiO band at 7.5 um. Variable stars show stronger H2O absorption. While the strength of the SiO fundamental at 8 um increases monotonically from spectral class K0 to K5, the dependence on spectral class weakens in the M giants. As with previously studied samples, the M giants show considerable scatter in SiO band strength within a given spectral class. All of the stars in our sample also show OH band absorption, most noticeably in the 14-17 um region. The OH bands behave much like the SiO bands, increasing in strength in the K giants but showing weaker dependence on spectral class in the M giants, and with considerable scatter. An examination of the photometric properties reveals that the V-K color may be a better indicator of molecular band strength than the spectral class. The transformation from Tycho colors to Johnson B-V color is double-valued, and neither B-V nor BT-VT color increases monotonically with spectral class in the M giants like they do in the K giants.



rate research

Read More

137 - Maria Messineo 2021
We present infrared spectral indices (1.0-2.3 um) of Galactic late-type giants and red supergiants (RSGs). We used existing and new spectra obtained at resolution power R=2000 with SpeX on the IRTF telescope. While a large CO equivalent width (EW), at 2.29 um ([CO, 2.29]>45 AA) is a typical signature of RSGs later than spectral type M0, [CO] of K-type RSGs and giants are similar. In the [CO, 2.29] versus [Mg I, 1.71] diagram, RSGs of all spectral types can be distinguished from red giants, because the Mg I line weakens with increasing temperature and decreasing gravity. We find several lines that vary with luminosity, but not temperature: Si I (1.59 um), Sr (1.033 um), Fe+Cr+Si+CN (1.16 um), Fe+Ti (1.185 um), Fe+Ti (1.196 um), Ti+Ca (1.28 um), and Mn (1.29 um). Good markers of CN enhancement are the Fe+Si+CN line at 1.087 um and CN line at 1.093 um. Using these lines, at the resolution of SpeX, it is possible to separate RSGs and giants. Contaminant O-rich Mira and S-type AGBs are recognized by strong molecular features due to water vapor features, TiO band heads, and/or ZrO absorption. Among the 42 candidate RSGs that we observed, all but one were found to be late-types. 21 have EWs consistent with those of RSGs, 16 with those of O-rich Mira AGBs, and one with an S-type AGB. These infrared results open new, unexplored, potential for searches at low-resolution of RSGs in the highly obscured innermost regions of the Milky Way.
Carbon and oxygen isotopic ratios are reported for a sample of 51 SRb- and Lb-type variable asymptotic giant branch stars. Vibration-rotation first- and second-overtone CO lines in 1.5-2.5 mum spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Using the oxygen isotopic ratios, the masses of the SRb stars can be derived. Combining the masses with Gaia luminosities, the SRb stars are shown to be antecedents of the Mira variables. The limiting parameters where plane-parallel, hydrostatic equilibrium model atmospheres can be used for abundance analysis of M giants are explored.
Evolved stars near the tip of the red giant branch (TRGB) show solar-like oscillations with periods spanning hours to months and amplitudes ranging from $sim$1 mmag to $sim$100 mmag. The systematic detection of the resulting photometric variations with ground-based telescopes would enable the application of asteroseismology to a much larger and more distant sample of stars than is currently accessible with space-based telescopes such as textit{Kepler} or the ongoing Transiting Exoplanet Survey Satellite (textit{TESS}) mission. We present an asteroseismic analysis of 493 M giants using data from two ground-based surveys: the Asteroid Terrestrial-impact Last Alert System (ATLAS) and the All-Sky Automated Survey for Supernovae (ASAS-SN). By comparing the extracted frequencies with constraints from textit{Kepler}, the Sloan Digital Sky Survey Apache Point Observatory Galaxy Evolution Experiment (APOGEE), and Gaia we demonstrate that ground-based transient surveys allow accurate distance measurements to oscillating M giants with a precision of $sim$15$%$. Using stellar population synthesis models we predict that ATLAS and ASAS-SN can provide asteroseismic distances to $sim$2$times$10$^{6}$ galactic M giants out to typical distances of $20-50 ; rm{kpc}$, vastly improving the reach of Gaia and providing critical constraints for Galactic archaeology and galactic dynamics.
We present Spitzer InfraRed Spectrograph (IRS) low-resolution spectra of 16 spectroscopically selected post-starburst quasars (PSQs) at z ~ 0.3. The optical spectra of these broad-lined active galactic nuclei (AGNs) simultaneously show spectral signatures of massive intermediate-aged stellar populations making them good candidates for studying the connections between AGNs and their hosts. The resulting spectra show relatively strong polycyclic aromatic hydrocarbon (PAH) emission features at 6.2 and 11.3micron and a very weak silicate feature, indicative of ongoing star formation and low dust obscuration levels for the AGNs. We find that the mid-infrared composite spectrum of PSQs has spectral properties between ULIRGs and QSOs, suggesting that PSQs are hybrid AGN and starburst systems as also seen in their optical spectra. We also find that PSQs in early-type host galaxies tend to have relatively strong AGN activities, while those in spiral hosts have stronger PAH emission, indicating more star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا