Do you want to publish a course? Click here

Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties

62   0   0.0 ( 0 )
 Added by Tyler Engstrom
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are bred by a genetic algorithm, and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the $T=0$ bulk phase diagrams, five of which are complicated multinary structures not before predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase layering diagram and mass-radius-composition dependence, both of which are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial phases (interphases) show up at the boundaries between single-component bcc crystalline regions, some of which have lower lattice symmetry than cubic. A second application -- quasi-static settling of heavy nuclei in white dwarfs -- builds on our equilibrium phase layering method. Tests of this nonequilibrium method reveal extra phases which play the role of transient host phases for the settling species.



rate research

Read More

In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which Ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are Hall equilibria, i.e., field configurations that are unaffected by Hall drift. Here, we address the crucial question of the stability of these equilibria through axially symmetric (2D) numerical simulations of Hall drift and Ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D-stability of a purely poloidal equilibrium, for which Ohmic dissipation makes the field evolve towards an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the Ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution towards an attractor, just as the purely poloidal one.
Magnetic field evolution in neutron-star crusts is driven by the Hall effect and Ohmic dissipation, for as long as the crust is sufficiently strong to absorb Maxwell stresses exerted by the field and thus make the momentum equation redundant. For the strongest neutron-star fields, however, stresses build to the point of crustal failure, at which point the standard evolution equations are no longer valid. Here, we study the evolution of the magnetic field of the crust up to and beyond crustal failure, whence the crust begins to flow plastically. We perform global axisymmetric evolutions, exploring different types of failure affecting a limited region of the crust. We find that a plastic flow does not simply suppress the Hall effect even in the regime of a low plastic viscosity, but it rather leads to non-trivial evolution -- in some cases even overreacting and enhancing the impact of the Hall effect. Its impact is more pronouced in the toroidal field, with the differences on the poloidal field being less substantial. We argue that both the nature of magnetar bursts and their spindown evolution will be affected by plastic flow, so that observations of these phenomena may help to constrain the way the crust fails.
We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.
The merger of close double white dwarfs (CDWDs) is one of the favourite evolutionary channels for producing Type Ia supernovae (SN Ia). Unfortunately, current theories of the evolution and formation of CDWDs are still poorly constrained and have several serious uncertainties, which affect the predicted SN Ia rates. Moreover, current observational constraints on this evolutionary pathway for SN Ia mainly rely on only 18 double-lined and/or eclipsing CDWDs with measured orbital and stellar parameters for both white dwarfs. In this paper we present the orbital periods and the individual masses of three new double-lined CDWDs, derived using a new method. This method employs mass ratios, the Halpha core ratios and spectral model-fitting to constrain the masses of the components of the pair. The three CDWDs are WD0028-474 (Porb=9.350 +- 0.007 hours, M1=0.60 +- 0.06 Msun, M2=0.45 +- 0.04 Msun), HE0410-1137 (Porb = 12.208 +- 0.008 hours, M1= 0.51 +- 0.04 Msun, M2= 0.39 +- 0.03 Msun) and SDSSJ031813.25-010711.7 (Porb = 45.908 +- 0.006 hours, among the longest period systems, M1= 0.40 +- 0.05 Msun, M2= 0.49 +- 0.05 Msun). While the three systems studied here will merge in timescales longer than the Hubble time and are expected to become single massive (>~0.9 Msun) white dwarfs rather than exploding as SN Ia, increasing the small sample of CDWDs with determined stellar parameters is crucial for a better overall understanding of their evolution.
Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this superfluid has been recently found to be entrained by the crust, and as a consequence it does not carry enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated employing a series of different unified dense-matter equations of state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا