Do you want to publish a course? Click here

High-resolution ion pulse ionization chamber with air filling for the Rn-222 decays detection

65   0   0.0 ( 0 )
 Added by Sergy Ratkevich
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register alpha-particles from the $^{222}$Rn and its daughters decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.



rate research

Read More

140 - Yu.M.Gavriljuk 2007
The construction of an ion pulse ionization chamber aimed at measuring ultra-low levels of surface alpha-activity of different samples is described. The results of measurement carried out with alpha-source and copper samples and light-reflecting film VM2000 are presented.
The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $pm$ 0.1) $mu$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.
112 - Y. P. Zhang , J. C. Liu , C. Guo 2017
The radioactive noble gas $^{222}$Rn, which can be dissolved in water, is an important background source for JUNO. In this paper, based on the water system of JUNO prototype, two kinds of high sensitivity radon detectors have been proposed and developed. The sensitivity of Si-PIN Rn detector, which uses a Si-PIN photodiode to detect the $alpha$ from $^{214}$Po decay, is $sim$9.0~mBq/m$^3$. The sensitivity of LS Rn detector, which uses liquid scintillator to detect the coincident signals of $beta$ from $^{214}$Bi decay and $alpha$ from $^{214}$Po decay, is $sim$64.0~mBq/m$^3$. Both of the two kinds of Rn detector have the potential to be developed as an online Rn concentration monitoring equipment for JUNO veto detector.
In this work, the $^{222}$Rn contamination mechanisms on acrylic surfaces have been investigated. $^{222}$Rn can represent a significant background source for low-background experiments, and acrylic is a suitable material for detector design thanks to its purity and transparency. Four acrylic samples have been exposed to a $^{222}$Rn rich environment for different time periods, being contaminated by $^{222}$Rn and its progenies. Subsequently, the time evolution of radiocontaminants activity on the samples has been evaluated with $alpha$ and $gamma$ measurements, highlighting the role of different decay modes in the contamination process. A detailed analysis of the alpha spectra allowed to quantify the implantation depth of the contaminants. Moreover, a study of both $alpha$ and $gamma$ measurements pointed out the $^{222}$Rn diffusion inside the samples.
In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the described detector is an ionization chamber adapted to fan beam geometry with an active area of 192 cm and a pitch of the anode strips of 150 micrometer. In the vertical direction beams as high as 10 mm can be accepted. Every read-out strip is connected to an analogue integrating electronics channel realized in a custom made VLSI chip. A MicroCAT structure utilized as a shielding grid enables frame rates as high as 10kHz. The high dynamic range observed stems from the fact that the MicroCAT enables active electron amplification in the gas. Thus a single photon resolution can be obtained for low photon fluxes even with the integrating electronics. The specialty of this device is that for each photon flux the gas amplification can be adjusted in such a fashion that the maximum DQE value is achieved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا