Do you want to publish a course? Click here

Chimera patterns under the impact of noise

94   0   0.0 ( 0 )
 Added by Anna Zakharova
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate two types of chimera states, i.e., patterns consisting of coexisting spatially separated domains with coherent and incoherent dynamics, in ring networks of Stuart-Landau oscillators with symmetry-breaking coupling, under the influence of noise. Amplitude chimeras are characterized by temporally periodic dynamics throughout the whole network, but spatially incoherent behavior with respect to the amplitudes in a part of the system; they are long-living transients. Chimera death states generalize chimeras to stationary inhomogeneous patterns (oscillation death), which combine spatially coherent and incoherent domains. We analyze the impact of random perturbations, addressing the question of robustness of chimera states in the presence of white noise. We further consider the effect of symmetries applied to random initial conditions.



rate research

Read More

The emergence of order in collective dynamics is a fascinating phenomenon that characterizes many natural systems consisting of coupled entities. Synchronization is such an example where individuals, usually represented by either linear or nonlinear oscillators, can spontaneously act coherently with each other when the interactions configuration fulfills certain conditions. However, synchronization is not always perfect, and the coexistence of coherent and incoherent oscillators, broadly known in the literature as chimera states, is also possible. Although several attempts have been made to explain how chimera states are created, their emergence, stability, and robustness remain a long-debated question. We propose an approach that aims to establish a robust mechanism through which chimeras originate. We first introduce a stability-breaking method where clusters of synchronized oscillators can emerge. Similarly, one or more clusters of oscillators may remain incoherent within yielding a particular class of patterns that we here name cluster chimera states.
Chimera states arising in the classic Kuramoto system of two-dimensional phase coupled oscillators are transient but they are long transients in the sense that the average transient lifetime grows exponentially with the system size. For reasonably large systems, e.g., those consisting of a few hundreds oscillators, it is infeasible to numerically calculate or experimentally measure the average lifetime, so the chimera states are practically permanent. We find that small perturbations in the third dimension, which make system slightly three-dimensional, will reduce dramatically the transient lifetime. In particular, under such a perturbation, the practically infinite average transient lifetime will become extremely short, because it scales with the magnitude of the perturbation only logarithmically. Physically, this means that a reduction in the perturbation strength over many orders of magnitude, insofar as it is not zero, would result in only an incremental increase in the lifetime. The uncovered type of fragility of chimera states raises concerns about their observability in physical systems.
We report the emergence of stable amplitude chimeras and chimera death in a two-layer network where one layer has an ensemble of identical nonlinear oscillators interacting directly through local coupling and indirectly through dynamic agents that form the second layer. The nonlocality in the interaction among the dynamical agents in the second layer induces different types of chimera related dynamical states in the first layer. The amplitude chimeras developed in them are found to be extremely stable, while chimera death states are prevalent for increased coupling strengths. The results presented are for a system of coupled Stuart-Landau oscillators and can in general represent systems with short-range interactions coupled to another set of systems with long range interactions. In this case, by tuning the range of interactions among the oscillators or the coupling strength between the two types of systems, we can control the nature of chimera states and the system can be restored to homogeneous steady states. The dynamic agents interacting nonlocally with long-range interactions can be considered as a dynamic environment or medium interacting with the system. We indicate how the second layer can act as a reinforcement mechanism on the first layer under various possible interactions for desirable effects.
We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We find different kinds of chimera states, in which coherent in-phase and anti-phase domains coexist with incoherent domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This finding could be relevant for natural and technological systems composed of mobile communicating agents.
322 - Yusuke Suda , Koji Okuda 2019
Chimera states in one-dimensional nonlocally coupled phase oscillators are mostly assumed to be stationary, but breathing chimeras can occasionally appear, branching from the stationary chimeras via Hopf bifurcation. In this paper, we demonstrate two types of breathing chimeras: The type I breathing chimera looks the same as the stationary chimera at a glance, while the type II consists of multiple coherent regions with different average frequencies. Moreover, it is shown that the type I changes to the type II by increasing the breathing amplitude. Furthermore, we develop a self-consistent analysis of the local order parameter, which can be applied to breathing chimeras, and numerically demonstrate this analysis in the present system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا