Do you want to publish a course? Click here

Beat-Event Detection in Action Movie Franchises

67   0   0.0 ( 0 )
 Added by Team Lear
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

While important advances were recently made towards temporally localizing and recognizing specific human actions or activities in videos, efficient detection and classification of long video chunks belonging to semantically defined categories such as pursuit or romance remains challenging.We introduce a new dataset, Action Movie Franchises, consisting of a collection of Hollywood action movie franchises. We define 11 non-exclusive semantic categories - called beat-categories - that are broad enough to cover most of the movie footage. The corresponding beat-events are annotated as groups of video shots, possibly overlapping.We propose an approach for localizing beat-events based on classifying shots into beat-categories and learning the temporal constraints between shots. We show that temporal constraints significantly improve the classification performance. We set up an evaluation protocol for beat-event localization as well as for shot classification, depending on whether movies from the same franchise are present or not in the training data.



rate research

Read More

This paper propose a novel dictionary learning approach to detect event action using skeletal information extracted from RGBD video. The event action is represented as several latent atoms and composed of latent spatial and temporal attributes. We perform the method at the example of fall event detection. The skeleton frames are clustered by an initial K-means method. Each skeleton frame is assigned with a varying weight parameter and fed into our Gradual Online Dictionary Learning (GODL) algorithm. During the training process, outlier frames will be gradually filtered by reducing the weight that is inversely proportional to a cost. In order to strictly distinguish the event action from similar actions and robustly acquire its action unit, we build a latent unit temporal structure for each sub-action. We evaluate the proposed method on parts of the NTURGB+D dataset, which includes 209 fall videos, 405 ground-lift videos, 420 sit-down videos, and 280 videos of 46 otheractions. We present the experimental validation of the achieved accuracy, recall and precision. Our approach achieves the bestperformance on precision and accuracy of human fall event detection, compared with other existing dictionary learning methods. With increasing noise ratio, our method remains the highest accuracy and the lowest variance.
Traditional cinematography has relied for over a century on a well-established set of editing rules, called continuity editing, to create a sense of situational continuity. Despite massive changes in visual content across cuts, viewers in general experience no trouble perceiving the discontinuous flow of information as a coherent set of events. However, Virtual Reality (VR) movies are intrinsically different from traditional movies in that the viewer controls the camera orientation at all times. As a consequence, common editing techniques that rely on camera orientations, zooms, etc., cannot be used. In this paper we investigate key relevant questions to understand how well traditional movie editing carries over to VR. To do so, we rely on recent cognition studies and the event segmentation theory, which states that our brains segment continuous actions into a series of discrete, meaningful events. We first replicate one of these studies to assess whether the predictions of such theory can be applied to VR. We next gather gaze data from viewers watching VR videos containing different edits with varying parameters, and provide the first systematic analysis of viewers behavior and the perception of continuity in VR. From this analysis we make a series of relevant findings; for instance, our data suggests that predictions from the cognitive event segmentation theory are useful guides for VR editing; that different types of edits are equally well understood in terms of continuity; and that spatial misalignments between regions of interest at the edit boundaries favor a more exploratory behavior even after viewers have fixated on a new region of interest. In addition, we propose a number of metrics to describe viewers attentional behavior in VR. We believe the insights derived from our work can be useful as guidelines for VR content creation.
Efficiently modeling spatial-temporal information in videos is crucial for action recognition. To achieve this goal, state-of-the-art methods typically employ the convolution operator and the dense interaction modules such as non-local blocks. However, these methods cannot accurately fit the diverse events in videos. On the one hand, the adopted convolutions are with fixed scales, thus struggling with events of various scales. On the other hand, the dense interaction modeling paradigm only achieves sub-optimal performance as action-irrelevant parts bring additional noises for the final prediction. In this paper, we propose a unified action recognition framework to investigate the dynamic nature of video content by introducing the following designs. First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events. Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer, which yields a sparse paradigm. We call the proposed framework as Event Adaptive Network (EAN) because both key designs are adaptive to the input video content. To exploit the short-term motions within local segments, we propose a novel and efficient Latent Motion Code (LMC) module, further improving the performance of the framework. Extensive experiments on several large-scale video datasets, e.g., Something-to-Something V1&V2, Kinetics, and Diving48, verify that our models achieve state-of-the-art or competitive performances at low FLOPs. Codes are available at: https://github.com/tianyuan168326/EAN-Pytorch.
This paper presents a novel task together with a new benchmark for detecting generic, taxonomy-free event boundaries that segment a whole video into chunks. Conventional work in temporal video segmentation and action detection focuses on localizing pre-defined action categories and thus does not scale to generic videos. Cognitive Science has known since last century that humans consistently segment videos into meaningful temporal chunks. This segmentation happens naturally, without pre-defined event categories and without being explicitly asked to do so. Here, we repeat these cognitive experiments on mainstream CV datasets; with our novel annotation guideline which addresses the complexities of taxonomy-free event boundary annotation, we introduce the task of Generic Event Boundary Detection (GEBD) and the new benchmark Kinetics-GEBD. Our Kinetics-GEBD has the largest number of boundaries (e.g. 32 of ActivityNet, 8 of EPIC-Kitchens-100) which are in-the-wild, taxonomy-free, cover generic event change, and respect human perception diversity. We view GEBD as an important stepping stone towards understanding the video as a whole, and believe it has been previously neglected due to a lack of proper task definition and annotations. Through experiment and human study we demonstrate the value of the annotations. Further, we benchmark supervised and un-supervised GEBD approaches on the TAPOS dataset and our Kinetics-GEBD. We release our annotations and baseline codes at CVPR21 LOVEU Challenge: https://sites.google.com/view/loveucvpr21.
The recent introduction of the AVA dataset for action detection has caused a renewed interest to this problem. Several approaches have been recently proposed that improved the performance. However, all of them have ignored the main difficulty of the AVA dataset - its realistic distribution of training and test examples. This dataset was collected by exhaustive annotation of human action in uncurated videos. As a result, the most common categories, such as `stand or `sit, contain tens of thousands of examples, whereas rare ones have only dozens. In this work we study the problem of action detection in a highly-imbalanced dataset. Differently from previous work on handling long-tail category distributions, we begin by analyzing the imbalance in the test set. We demonstrate that the standard AP metric is not informative for the categories in the tail, and propose an alternative one - Sampled AP. Armed with this new measure, we study the problem of transferring representations from the data-rich head to the rare tail categories and propose a simple but effective approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا