Do you want to publish a course? Click here

Testing Lorentz symmetry with planetary orbital dynamics

99   0   0.0 ( 0 )
 Added by Aur\\'elien Hees
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.



rate research

Read More

The Weak Equivalence Principle (WEP) and the local Lorentz invariance (LLI) are two major assumptions of General Relativity (GR). The MICROSCOPE mission, currently operating, will perform a test of the WEP with a precision of $10^{-15}$. The data will also be analysed at SYRTE for the purposes of a LLI test realised in collaboration with J. Tasson (Carleton College, Minnesota) and Q. Bailey (Embry-Riddle Aeronautical University, Arizona). This study will be performed in a general framework, called the Standard Model Extension (SME), describing Lorentz violations that could appear at Planck scale ($10^{19}$ GeV). The SME allows us to derive a Lorentz violating observable designed for the MICROSCOPE experiment and to search for possible deviations from LLI in the differential acceleration of the test masses.
402 - G.E. Volovik 2020
We consider the possibility of the scenario in which the $P$, $T$ and Lorentz symmetry of the relativistic quantum vacuum are all the combined symmetries. These symmetries emerge as a result of the symmetry breaking of the more fundamental $P$, $T$ and Lorentz symmetries of the original vacuum, which is invariant under separate groups of the coordinate transformations and spin rotations. The condensed matter vacua (ground states) suggest two possible scenarios of the origin of the combined Lorentz symmetry, both are realized in the superfluid phases of liquid $^3$He: the $^3$He-A scenario and the $^3$He-B scenario. In these scenarios the gravitational tetrads are considered as the order parameter of the symmetry breaking in the quantum vacuum. The $^3$He-B scenarios applied to the Minkowski vacuum leads to the continuous degeneracy of the Minkowski vacuum with respect to the $O(3,1)$ spin rotations. The symmetry breaking leads to the corresponding topological objects, which appear due to the nontrivial topology of the manifold of the degenerate Minkowski vacua, such as torsion strings. The 4-fold degeneracy of the Minkowski vacuum with respect to discrete $P$ and $T$ symmetries suggests that the Weyl fermions are described by four different tetrad fields: the tetrad for the left-handed fermions, the tetrad for the right-handed fermions, and the tetrads for their antiparticles. This may lead to the gravity with several metric fields, so that the parity violation may lead to the breaking of equivalence principle. Finally we considered the application of the gravitational tetrads for the solution of the cosmological constant problem.
Lorentz invariance plays a fundamental role in modern physics. However, tiny violations of the Lorentz invariance may arise in some candidate quantum gravity theories. Prominent signatures of the gravitational Lorentz invariance violation (gLIV) include anisotropy, dispersion, and birefringence in the dispersion relation of gravitational waves (GWs). Using a total of 50 GW events in the GW transient catalogs GWTC-1 and GWTC-2, we perform an analysis on the anisotropic birefringence phenomenon. The use of multiple events allows us to completely break the degeneracy among gLIV coefficients and globally constrain the coefficient space. Compared to previous results at mass dimensions 5 and 6 for the Lorentz-violating operators, we tighten the global limits of 34 coefficients by factors ranging from $2$ to $7$.
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
We propose a high precision satellite experiment to further test Einsteins General Relativity and constrain extended theories of gravity. We consider the frequency shift of a photon radially exchanged between two observers located on Earth and on a satellite in circular orbit in the equatorial plane. In General Relativity there exists a peculiar satellite-distance at which the static contribution to the frequency shift vanishes since the effects induced by pure gravity and special relativity compensate, while it can be non-zero in modified gravities, like in models with screening mechanisms. As an experimental device placed on the satellite we choose a system of hydrogen atoms which can exhibit the $1$s spin-flip transition from the singlet (unaligned proton-electron spins) to the triplet (aligned proton-electron spins) state induced by the absorption of photons at $21.1$cm. The observation of an excited state would indicate that the frequency of the emitted and absorbed photon remains unchanged according to General Relativity. On the contrary, a non-zero frequency shift, as predicted in extended theories of gravity, would prevent the spin-flip transition and the hydrogen atoms from jumping into the excited state. Such a detection would signify a smoking-gun signature of new physics beyond special and general relativity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا